2757
|
1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */
|
|
2 /*
|
|
3 * ====================================================
|
|
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
5 *
|
|
6 * Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
7 * Permission to use, copy, modify, and distribute this
|
|
8 * software is freely granted, provided that this notice
|
|
9 * is preserved.
|
|
10 * ====================================================
|
|
11 */
|
|
12
|
|
13 #if defined(LIBM_SCCS) && !defined(lint)
|
|
14 static char rcsid[] =
|
|
15 "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $";
|
|
16 #endif
|
|
17
|
|
18 /*
|
|
19 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2)
|
|
20 * double x[],y[]; int e0,nx,prec; int ipio2[];
|
|
21 *
|
|
22 * __kernel_rem_pio2 return the last three digits of N with
|
|
23 * y = x - N*pi/2
|
|
24 * so that |y| < pi/2.
|
|
25 *
|
|
26 * The method is to compute the integer (mod 8) and fraction parts of
|
|
27 * (2/pi)*x without doing the full multiplication. In general we
|
|
28 * skip the part of the product that are known to be a huge integer (
|
|
29 * more accurately, = 0 mod 8 ). Thus the number of operations are
|
|
30 * independent of the exponent of the input.
|
|
31 *
|
|
32 * (2/pi) is represented by an array of 24-bit integers in ipio2[].
|
|
33 *
|
|
34 * Input parameters:
|
|
35 * x[] The input value (must be positive) is broken into nx
|
|
36 * pieces of 24-bit integers in double precision format.
|
|
37 * x[i] will be the i-th 24 bit of x. The scaled exponent
|
|
38 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0
|
|
39 * match x's up to 24 bits.
|
|
40 *
|
|
41 * Example of breaking a double positive z into x[0]+x[1]+x[2]:
|
|
42 * e0 = ilogb(z)-23
|
|
43 * z = scalbn(z,-e0)
|
|
44 * for i = 0,1,2
|
|
45 * x[i] = floor(z)
|
|
46 * z = (z-x[i])*2**24
|
|
47 *
|
|
48 *
|
|
49 * y[] ouput result in an array of double precision numbers.
|
|
50 * The dimension of y[] is:
|
|
51 * 24-bit precision 1
|
|
52 * 53-bit precision 2
|
|
53 * 64-bit precision 2
|
|
54 * 113-bit precision 3
|
|
55 * The actual value is the sum of them. Thus for 113-bit
|
|
56 * precison, one may have to do something like:
|
|
57 *
|
|
58 * long double t,w,r_head, r_tail;
|
|
59 * t = (long double)y[2] + (long double)y[1];
|
|
60 * w = (long double)y[0];
|
|
61 * r_head = t+w;
|
|
62 * r_tail = w - (r_head - t);
|
|
63 *
|
|
64 * e0 The exponent of x[0]
|
|
65 *
|
|
66 * nx dimension of x[]
|
|
67 *
|
|
68 * prec an integer indicating the precision:
|
|
69 * 0 24 bits (single)
|
|
70 * 1 53 bits (double)
|
|
71 * 2 64 bits (extended)
|
|
72 * 3 113 bits (quad)
|
|
73 *
|
|
74 * ipio2[]
|
|
75 * integer array, contains the (24*i)-th to (24*i+23)-th
|
|
76 * bit of 2/pi after binary point. The corresponding
|
|
77 * floating value is
|
|
78 *
|
|
79 * ipio2[i] * 2^(-24(i+1)).
|
|
80 *
|
|
81 * External function:
|
|
82 * double scalbn(), floor();
|
|
83 *
|
|
84 *
|
|
85 * Here is the description of some local variables:
|
|
86 *
|
|
87 * jk jk+1 is the initial number of terms of ipio2[] needed
|
|
88 * in the computation. The recommended value is 2,3,4,
|
|
89 * 6 for single, double, extended,and quad.
|
|
90 *
|
|
91 * jz local integer variable indicating the number of
|
|
92 * terms of ipio2[] used.
|
|
93 *
|
|
94 * jx nx - 1
|
|
95 *
|
|
96 * jv index for pointing to the suitable ipio2[] for the
|
|
97 * computation. In general, we want
|
|
98 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8
|
|
99 * is an integer. Thus
|
|
100 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv
|
|
101 * Hence jv = max(0,(e0-3)/24).
|
|
102 *
|
|
103 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk.
|
|
104 *
|
|
105 * q[] double array with integral value, representing the
|
|
106 * 24-bits chunk of the product of x and 2/pi.
|
|
107 *
|
|
108 * q0 the corresponding exponent of q[0]. Note that the
|
|
109 * exponent for q[i] would be q0-24*i.
|
|
110 *
|
|
111 * PIo2[] double precision array, obtained by cutting pi/2
|
|
112 * into 24 bits chunks.
|
|
113 *
|
|
114 * f[] ipio2[] in floating point
|
|
115 *
|
|
116 * iq[] integer array by breaking up q[] in 24-bits chunk.
|
|
117 *
|
|
118 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk]
|
|
119 *
|
|
120 * ih integer. If >0 it indicates q[] is >= 0.5, hence
|
|
121 * it also indicates the *sign* of the result.
|
|
122 *
|
|
123 */
|
|
124
|
|
125
|
|
126 /*
|
|
127 * Constants:
|
|
128 * The hexadecimal values are the intended ones for the following
|
|
129 * constants. The decimal values may be used, provided that the
|
|
130 * compiler will convert from decimal to binary accurately enough
|
|
131 * to produce the hexadecimal values shown.
|
|
132 */
|
|
133
|
|
134 #include "math.h"
|
|
135 #include "math_private.h"
|
|
136
|
|
137 libm_hidden_proto(scalbn)
|
|
138 libm_hidden_proto(floor)
|
|
139 #ifdef __STDC__
|
|
140 static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */
|
|
141 #else
|
|
142 static int init_jk[] = { 2, 3, 4, 6 };
|
|
143 #endif
|
|
144
|
|
145 #ifdef __STDC__
|
|
146 static const double PIo2[] = {
|
|
147 #else
|
|
148 static double PIo2[] = {
|
|
149 #endif
|
|
150 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
|
|
151 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
|
|
152 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
|
|
153 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
|
|
154 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
|
|
155 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
|
|
156 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
|
|
157 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
|
|
158 };
|
|
159
|
|
160 #ifdef __STDC__
|
|
161 static const double
|
|
162 #else
|
|
163 static double
|
|
164 #endif
|
|
165 zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */
|
|
166 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */
|
|
167
|
|
168 #ifdef __STDC__
|
|
169 int attribute_hidden
|
|
170 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec,
|
|
171 const int32_t * ipio2)
|
|
172 #else
|
|
173 int attribute_hidden
|
|
174 __kernel_rem_pio2(x, y, e0, nx, prec, ipio2)
|
|
175 double x[], y[];
|
|
176 int e0, nx, prec;
|
|
177 int32_t ipio2[];
|
|
178 #endif
|
|
179 {
|
|
180 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
|
|
181 double z, fw, f[20], fq[20], q[20];
|
|
182
|
|
183 /* initialize jk */
|
|
184 jk = init_jk[prec];
|
|
185 jp = jk;
|
|
186
|
|
187 /* determine jx,jv,q0, note that 3>q0 */
|
|
188 jx = nx - 1;
|
|
189 jv = (e0 - 3) / 24;
|
|
190 if (jv < 0)
|
|
191 jv = 0;
|
|
192 q0 = e0 - 24 * (jv + 1);
|
|
193
|
|
194 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
|
|
195 j = jv - jx;
|
|
196 m = jx + jk;
|
|
197 for (i = 0; i <= m; i++, j++)
|
|
198 f[i] = (j < 0) ? zero : (double) ipio2[j];
|
|
199
|
|
200 /* compute q[0],q[1],...q[jk] */
|
|
201 for (i = 0; i <= jk; i++) {
|
|
202 for (j = 0, fw = 0.0; j <= jx; j++)
|
|
203 fw += x[j] * f[jx + i - j];
|
|
204 q[i] = fw;
|
|
205 }
|
|
206
|
|
207 jz = jk;
|
|
208 recompute:
|
|
209 /* distill q[] into iq[] reversingly */
|
|
210 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
|
|
211 fw = (double) ((int32_t) (twon24 * z));
|
|
212 iq[i] = (int32_t) (z - two24 * fw);
|
|
213 z = q[j - 1] + fw;
|
|
214 }
|
|
215
|
|
216 /* compute n */
|
|
217 z = scalbn(z, q0); /* actual value of z */
|
|
218 z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
|
|
219 n = (int32_t) z;
|
|
220 z -= (double) n;
|
|
221 ih = 0;
|
|
222 if (q0 > 0) { /* need iq[jz-1] to determine n */
|
|
223 i = (iq[jz - 1] >> (24 - q0));
|
|
224 n += i;
|
|
225 iq[jz - 1] -= i << (24 - q0);
|
|
226 ih = iq[jz - 1] >> (23 - q0);
|
|
227 } else if (q0 == 0)
|
|
228 ih = iq[jz - 1] >> 23;
|
|
229 else if (z >= 0.5)
|
|
230 ih = 2;
|
|
231
|
|
232 if (ih > 0) { /* q > 0.5 */
|
|
233 n += 1;
|
|
234 carry = 0;
|
|
235 for (i = 0; i < jz; i++) { /* compute 1-q */
|
|
236 j = iq[i];
|
|
237 if (carry == 0) {
|
|
238 if (j != 0) {
|
|
239 carry = 1;
|
|
240 iq[i] = 0x1000000 - j;
|
|
241 }
|
|
242 } else
|
|
243 iq[i] = 0xffffff - j;
|
|
244 }
|
|
245 if (q0 > 0) { /* rare case: chance is 1 in 12 */
|
|
246 switch (q0) {
|
|
247 case 1:
|
|
248 iq[jz - 1] &= 0x7fffff;
|
|
249 break;
|
|
250 case 2:
|
|
251 iq[jz - 1] &= 0x3fffff;
|
|
252 break;
|
|
253 }
|
|
254 }
|
|
255 if (ih == 2) {
|
|
256 z = one - z;
|
|
257 if (carry != 0)
|
|
258 z -= scalbn(one, q0);
|
|
259 }
|
|
260 }
|
|
261
|
|
262 /* check if recomputation is needed */
|
|
263 if (z == zero) {
|
|
264 j = 0;
|
|
265 for (i = jz - 1; i >= jk; i--)
|
|
266 j |= iq[i];
|
|
267 if (j == 0) { /* need recomputation */
|
|
268 for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */
|
|
269
|
|
270 for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
|
|
271 f[jx + i] = (double) ipio2[jv + i];
|
|
272 for (j = 0, fw = 0.0; j <= jx; j++)
|
|
273 fw += x[j] * f[jx + i - j];
|
|
274 q[i] = fw;
|
|
275 }
|
|
276 jz += k;
|
|
277 goto recompute;
|
|
278 }
|
|
279 }
|
|
280
|
|
281 /* chop off zero terms */
|
|
282 if (z == 0.0) {
|
|
283 jz -= 1;
|
|
284 q0 -= 24;
|
|
285 while (iq[jz] == 0) {
|
|
286 jz--;
|
|
287 q0 -= 24;
|
|
288 }
|
|
289 } else { /* break z into 24-bit if necessary */
|
|
290 z = scalbn(z, -q0);
|
|
291 if (z >= two24) {
|
|
292 fw = (double) ((int32_t) (twon24 * z));
|
|
293 iq[jz] = (int32_t) (z - two24 * fw);
|
|
294 jz += 1;
|
|
295 q0 += 24;
|
|
296 iq[jz] = (int32_t) fw;
|
|
297 } else
|
|
298 iq[jz] = (int32_t) z;
|
|
299 }
|
|
300
|
|
301 /* convert integer "bit" chunk to floating-point value */
|
|
302 fw = scalbn(one, q0);
|
|
303 for (i = jz; i >= 0; i--) {
|
|
304 q[i] = fw * (double) iq[i];
|
|
305 fw *= twon24;
|
|
306 }
|
|
307
|
|
308 /* compute PIo2[0,...,jp]*q[jz,...,0] */
|
|
309 for (i = jz; i >= 0; i--) {
|
|
310 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
|
|
311 fw += PIo2[k] * q[i + k];
|
|
312 fq[jz - i] = fw;
|
|
313 }
|
|
314
|
|
315 /* compress fq[] into y[] */
|
|
316 switch (prec) {
|
|
317 case 0:
|
|
318 fw = 0.0;
|
|
319 for (i = jz; i >= 0; i--)
|
|
320 fw += fq[i];
|
|
321 y[0] = (ih == 0) ? fw : -fw;
|
|
322 break;
|
|
323 case 1:
|
|
324 case 2:
|
|
325 fw = 0.0;
|
|
326 for (i = jz; i >= 0; i--)
|
|
327 fw += fq[i];
|
|
328 y[0] = (ih == 0) ? fw : -fw;
|
|
329 fw = fq[0] - fw;
|
|
330 for (i = 1; i <= jz; i++)
|
|
331 fw += fq[i];
|
|
332 y[1] = (ih == 0) ? fw : -fw;
|
|
333 break;
|
|
334 case 3: /* painful */
|
|
335 for (i = jz; i > 0; i--) {
|
|
336 fw = fq[i - 1] + fq[i];
|
|
337 fq[i] += fq[i - 1] - fw;
|
|
338 fq[i - 1] = fw;
|
|
339 }
|
|
340 for (i = jz; i > 1; i--) {
|
|
341 fw = fq[i - 1] + fq[i];
|
|
342 fq[i] += fq[i - 1] - fw;
|
|
343 fq[i - 1] = fw;
|
|
344 }
|
|
345 for (fw = 0.0, i = jz; i >= 2; i--)
|
|
346 fw += fq[i];
|
|
347 if (ih == 0) {
|
|
348 y[0] = fq[0];
|
|
349 y[1] = fq[1];
|
|
350 y[2] = fw;
|
|
351 } else {
|
|
352 y[0] = -fq[0];
|
|
353 y[1] = -fq[1];
|
|
354 y[2] = -fw;
|
|
355 }
|
|
356 }
|
|
357 return n & 7;
|
|
358 }
|