Mercurial > sdl-ios-xcode
comparison src/libm/k_rem_pio2.c @ 2757:0581f49c9294
Whoops, missed a file...
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 15 Sep 2008 06:46:23 +0000 |
parents | |
children | dc1eb82ffdaa |
comparison
equal
deleted
inserted
replaced
2756:a98604b691c8 | 2757:0581f49c9294 |
---|---|
1 /* @(#)k_rem_pio2.c 5.1 93/09/24 */ | |
2 /* | |
3 * ==================================================== | |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 * | |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 * Permission to use, copy, modify, and distribute this | |
8 * software is freely granted, provided that this notice | |
9 * is preserved. | |
10 * ==================================================== | |
11 */ | |
12 | |
13 #if defined(LIBM_SCCS) && !defined(lint) | |
14 static char rcsid[] = | |
15 "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $"; | |
16 #endif | |
17 | |
18 /* | |
19 * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) | |
20 * double x[],y[]; int e0,nx,prec; int ipio2[]; | |
21 * | |
22 * __kernel_rem_pio2 return the last three digits of N with | |
23 * y = x - N*pi/2 | |
24 * so that |y| < pi/2. | |
25 * | |
26 * The method is to compute the integer (mod 8) and fraction parts of | |
27 * (2/pi)*x without doing the full multiplication. In general we | |
28 * skip the part of the product that are known to be a huge integer ( | |
29 * more accurately, = 0 mod 8 ). Thus the number of operations are | |
30 * independent of the exponent of the input. | |
31 * | |
32 * (2/pi) is represented by an array of 24-bit integers in ipio2[]. | |
33 * | |
34 * Input parameters: | |
35 * x[] The input value (must be positive) is broken into nx | |
36 * pieces of 24-bit integers in double precision format. | |
37 * x[i] will be the i-th 24 bit of x. The scaled exponent | |
38 * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 | |
39 * match x's up to 24 bits. | |
40 * | |
41 * Example of breaking a double positive z into x[0]+x[1]+x[2]: | |
42 * e0 = ilogb(z)-23 | |
43 * z = scalbn(z,-e0) | |
44 * for i = 0,1,2 | |
45 * x[i] = floor(z) | |
46 * z = (z-x[i])*2**24 | |
47 * | |
48 * | |
49 * y[] ouput result in an array of double precision numbers. | |
50 * The dimension of y[] is: | |
51 * 24-bit precision 1 | |
52 * 53-bit precision 2 | |
53 * 64-bit precision 2 | |
54 * 113-bit precision 3 | |
55 * The actual value is the sum of them. Thus for 113-bit | |
56 * precison, one may have to do something like: | |
57 * | |
58 * long double t,w,r_head, r_tail; | |
59 * t = (long double)y[2] + (long double)y[1]; | |
60 * w = (long double)y[0]; | |
61 * r_head = t+w; | |
62 * r_tail = w - (r_head - t); | |
63 * | |
64 * e0 The exponent of x[0] | |
65 * | |
66 * nx dimension of x[] | |
67 * | |
68 * prec an integer indicating the precision: | |
69 * 0 24 bits (single) | |
70 * 1 53 bits (double) | |
71 * 2 64 bits (extended) | |
72 * 3 113 bits (quad) | |
73 * | |
74 * ipio2[] | |
75 * integer array, contains the (24*i)-th to (24*i+23)-th | |
76 * bit of 2/pi after binary point. The corresponding | |
77 * floating value is | |
78 * | |
79 * ipio2[i] * 2^(-24(i+1)). | |
80 * | |
81 * External function: | |
82 * double scalbn(), floor(); | |
83 * | |
84 * | |
85 * Here is the description of some local variables: | |
86 * | |
87 * jk jk+1 is the initial number of terms of ipio2[] needed | |
88 * in the computation. The recommended value is 2,3,4, | |
89 * 6 for single, double, extended,and quad. | |
90 * | |
91 * jz local integer variable indicating the number of | |
92 * terms of ipio2[] used. | |
93 * | |
94 * jx nx - 1 | |
95 * | |
96 * jv index for pointing to the suitable ipio2[] for the | |
97 * computation. In general, we want | |
98 * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 | |
99 * is an integer. Thus | |
100 * e0-3-24*jv >= 0 or (e0-3)/24 >= jv | |
101 * Hence jv = max(0,(e0-3)/24). | |
102 * | |
103 * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. | |
104 * | |
105 * q[] double array with integral value, representing the | |
106 * 24-bits chunk of the product of x and 2/pi. | |
107 * | |
108 * q0 the corresponding exponent of q[0]. Note that the | |
109 * exponent for q[i] would be q0-24*i. | |
110 * | |
111 * PIo2[] double precision array, obtained by cutting pi/2 | |
112 * into 24 bits chunks. | |
113 * | |
114 * f[] ipio2[] in floating point | |
115 * | |
116 * iq[] integer array by breaking up q[] in 24-bits chunk. | |
117 * | |
118 * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] | |
119 * | |
120 * ih integer. If >0 it indicates q[] is >= 0.5, hence | |
121 * it also indicates the *sign* of the result. | |
122 * | |
123 */ | |
124 | |
125 | |
126 /* | |
127 * Constants: | |
128 * The hexadecimal values are the intended ones for the following | |
129 * constants. The decimal values may be used, provided that the | |
130 * compiler will convert from decimal to binary accurately enough | |
131 * to produce the hexadecimal values shown. | |
132 */ | |
133 | |
134 #include "math.h" | |
135 #include "math_private.h" | |
136 | |
137 libm_hidden_proto(scalbn) | |
138 libm_hidden_proto(floor) | |
139 #ifdef __STDC__ | |
140 static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */ | |
141 #else | |
142 static int init_jk[] = { 2, 3, 4, 6 }; | |
143 #endif | |
144 | |
145 #ifdef __STDC__ | |
146 static const double PIo2[] = { | |
147 #else | |
148 static double PIo2[] = { | |
149 #endif | |
150 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ | |
151 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ | |
152 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ | |
153 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ | |
154 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ | |
155 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ | |
156 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ | |
157 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ | |
158 }; | |
159 | |
160 #ifdef __STDC__ | |
161 static const double | |
162 #else | |
163 static double | |
164 #endif | |
165 zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ | |
166 twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ | |
167 | |
168 #ifdef __STDC__ | |
169 int attribute_hidden | |
170 __kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, | |
171 const int32_t * ipio2) | |
172 #else | |
173 int attribute_hidden | |
174 __kernel_rem_pio2(x, y, e0, nx, prec, ipio2) | |
175 double x[], y[]; | |
176 int e0, nx, prec; | |
177 int32_t ipio2[]; | |
178 #endif | |
179 { | |
180 int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; | |
181 double z, fw, f[20], fq[20], q[20]; | |
182 | |
183 /* initialize jk */ | |
184 jk = init_jk[prec]; | |
185 jp = jk; | |
186 | |
187 /* determine jx,jv,q0, note that 3>q0 */ | |
188 jx = nx - 1; | |
189 jv = (e0 - 3) / 24; | |
190 if (jv < 0) | |
191 jv = 0; | |
192 q0 = e0 - 24 * (jv + 1); | |
193 | |
194 /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ | |
195 j = jv - jx; | |
196 m = jx + jk; | |
197 for (i = 0; i <= m; i++, j++) | |
198 f[i] = (j < 0) ? zero : (double) ipio2[j]; | |
199 | |
200 /* compute q[0],q[1],...q[jk] */ | |
201 for (i = 0; i <= jk; i++) { | |
202 for (j = 0, fw = 0.0; j <= jx; j++) | |
203 fw += x[j] * f[jx + i - j]; | |
204 q[i] = fw; | |
205 } | |
206 | |
207 jz = jk; | |
208 recompute: | |
209 /* distill q[] into iq[] reversingly */ | |
210 for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { | |
211 fw = (double) ((int32_t) (twon24 * z)); | |
212 iq[i] = (int32_t) (z - two24 * fw); | |
213 z = q[j - 1] + fw; | |
214 } | |
215 | |
216 /* compute n */ | |
217 z = scalbn(z, q0); /* actual value of z */ | |
218 z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ | |
219 n = (int32_t) z; | |
220 z -= (double) n; | |
221 ih = 0; | |
222 if (q0 > 0) { /* need iq[jz-1] to determine n */ | |
223 i = (iq[jz - 1] >> (24 - q0)); | |
224 n += i; | |
225 iq[jz - 1] -= i << (24 - q0); | |
226 ih = iq[jz - 1] >> (23 - q0); | |
227 } else if (q0 == 0) | |
228 ih = iq[jz - 1] >> 23; | |
229 else if (z >= 0.5) | |
230 ih = 2; | |
231 | |
232 if (ih > 0) { /* q > 0.5 */ | |
233 n += 1; | |
234 carry = 0; | |
235 for (i = 0; i < jz; i++) { /* compute 1-q */ | |
236 j = iq[i]; | |
237 if (carry == 0) { | |
238 if (j != 0) { | |
239 carry = 1; | |
240 iq[i] = 0x1000000 - j; | |
241 } | |
242 } else | |
243 iq[i] = 0xffffff - j; | |
244 } | |
245 if (q0 > 0) { /* rare case: chance is 1 in 12 */ | |
246 switch (q0) { | |
247 case 1: | |
248 iq[jz - 1] &= 0x7fffff; | |
249 break; | |
250 case 2: | |
251 iq[jz - 1] &= 0x3fffff; | |
252 break; | |
253 } | |
254 } | |
255 if (ih == 2) { | |
256 z = one - z; | |
257 if (carry != 0) | |
258 z -= scalbn(one, q0); | |
259 } | |
260 } | |
261 | |
262 /* check if recomputation is needed */ | |
263 if (z == zero) { | |
264 j = 0; | |
265 for (i = jz - 1; i >= jk; i--) | |
266 j |= iq[i]; | |
267 if (j == 0) { /* need recomputation */ | |
268 for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */ | |
269 | |
270 for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ | |
271 f[jx + i] = (double) ipio2[jv + i]; | |
272 for (j = 0, fw = 0.0; j <= jx; j++) | |
273 fw += x[j] * f[jx + i - j]; | |
274 q[i] = fw; | |
275 } | |
276 jz += k; | |
277 goto recompute; | |
278 } | |
279 } | |
280 | |
281 /* chop off zero terms */ | |
282 if (z == 0.0) { | |
283 jz -= 1; | |
284 q0 -= 24; | |
285 while (iq[jz] == 0) { | |
286 jz--; | |
287 q0 -= 24; | |
288 } | |
289 } else { /* break z into 24-bit if necessary */ | |
290 z = scalbn(z, -q0); | |
291 if (z >= two24) { | |
292 fw = (double) ((int32_t) (twon24 * z)); | |
293 iq[jz] = (int32_t) (z - two24 * fw); | |
294 jz += 1; | |
295 q0 += 24; | |
296 iq[jz] = (int32_t) fw; | |
297 } else | |
298 iq[jz] = (int32_t) z; | |
299 } | |
300 | |
301 /* convert integer "bit" chunk to floating-point value */ | |
302 fw = scalbn(one, q0); | |
303 for (i = jz; i >= 0; i--) { | |
304 q[i] = fw * (double) iq[i]; | |
305 fw *= twon24; | |
306 } | |
307 | |
308 /* compute PIo2[0,...,jp]*q[jz,...,0] */ | |
309 for (i = jz; i >= 0; i--) { | |
310 for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) | |
311 fw += PIo2[k] * q[i + k]; | |
312 fq[jz - i] = fw; | |
313 } | |
314 | |
315 /* compress fq[] into y[] */ | |
316 switch (prec) { | |
317 case 0: | |
318 fw = 0.0; | |
319 for (i = jz; i >= 0; i--) | |
320 fw += fq[i]; | |
321 y[0] = (ih == 0) ? fw : -fw; | |
322 break; | |
323 case 1: | |
324 case 2: | |
325 fw = 0.0; | |
326 for (i = jz; i >= 0; i--) | |
327 fw += fq[i]; | |
328 y[0] = (ih == 0) ? fw : -fw; | |
329 fw = fq[0] - fw; | |
330 for (i = 1; i <= jz; i++) | |
331 fw += fq[i]; | |
332 y[1] = (ih == 0) ? fw : -fw; | |
333 break; | |
334 case 3: /* painful */ | |
335 for (i = jz; i > 0; i--) { | |
336 fw = fq[i - 1] + fq[i]; | |
337 fq[i] += fq[i - 1] - fw; | |
338 fq[i - 1] = fw; | |
339 } | |
340 for (i = jz; i > 1; i--) { | |
341 fw = fq[i - 1] + fq[i]; | |
342 fq[i] += fq[i - 1] - fw; | |
343 fq[i - 1] = fw; | |
344 } | |
345 for (fw = 0.0, i = jz; i >= 2; i--) | |
346 fw += fq[i]; | |
347 if (ih == 0) { | |
348 y[0] = fq[0]; | |
349 y[1] = fq[1]; | |
350 y[2] = fw; | |
351 } else { | |
352 y[0] = -fq[0]; | |
353 y[1] = -fq[1]; | |
354 y[2] = -fw; | |
355 } | |
356 } | |
357 return n & 7; | |
358 } |