Mercurial > sdl-ios-xcode
diff src/libm/e_pow.c @ 2756:a98604b691c8
Expanded the libm support and put it into a separate directory.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 15 Sep 2008 06:33:23 +0000 |
parents | |
children | 9ac6f0782dd6 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/libm/e_pow.c Mon Sep 15 06:33:23 2008 +0000 @@ -0,0 +1,342 @@ +/* @(#)e_pow.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $"; +#endif + +/* __ieee754_pow(x,y) return x**y + * + * n + * Method: Let x = 2 * (1+f) + * 1. Compute and return log2(x) in two pieces: + * log2(x) = w1 + w2, + * where w1 has 53-24 = 29 bit trailing zeros. + * 2. Perform y*log2(x) = n+y' by simulating muti-precision + * arithmetic, where |y'|<=0.5. + * 3. Return x**y = 2**n*exp(y'*log2) + * + * Special cases: + * 1. (anything) ** 0 is 1 + * 2. (anything) ** 1 is itself + * 3. (anything) ** NAN is NAN + * 4. NAN ** (anything except 0) is NAN + * 5. +-(|x| > 1) ** +INF is +INF + * 6. +-(|x| > 1) ** -INF is +0 + * 7. +-(|x| < 1) ** +INF is +0 + * 8. +-(|x| < 1) ** -INF is +INF + * 9. +-1 ** +-INF is NAN + * 10. +0 ** (+anything except 0, NAN) is +0 + * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 + * 12. +0 ** (-anything except 0, NAN) is +INF + * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF + * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) + * 15. +INF ** (+anything except 0,NAN) is +INF + * 16. +INF ** (-anything except 0,NAN) is +0 + * 17. -INF ** (anything) = -0 ** (-anything) + * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) + * 19. (-anything except 0 and inf) ** (non-integer) is NAN + * + * Accuracy: + * pow(x,y) returns x**y nearly rounded. In particular + * pow(integer,integer) + * always returns the correct integer provided it is + * representable. + * + * Constants : + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +libm_hidden_proto(scalbn) + libm_hidden_proto(fabs) +#ifdef __STDC__ + static const double +#else + static double +#endif + bp[] = { 1.0, 1.5, }, dp_h[] = { + 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ + + dp_l[] = { + 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ + + zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ + huge = 1.0e300, tiny = 1.0e-300, + /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ + L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ + L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ + L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ + L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ + L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ + L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ + P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ + P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ + P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ + P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ + P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ + lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ + lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ + lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ + ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ + cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ + cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ + cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */ + ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ + ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */ + ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */ + +#ifdef __STDC__ + double attribute_hidden __ieee754_pow(double x, double y) +#else + double attribute_hidden __ieee754_pow(x, y) + double x, y; +#endif + { + double z, ax, z_h, z_l, p_h, p_l; + double y1, t1, t2, r, s, t, u, v, w; + int32_t i, j, k, yisint, n; + int32_t hx, hy, ix, iy; + u_int32_t lx, ly; + + EXTRACT_WORDS(hx, lx, x); + EXTRACT_WORDS(hy, ly, y); + ix = hx & 0x7fffffff; + iy = hy & 0x7fffffff; + + /* y==zero: x**0 = 1 */ + if ((iy | ly) == 0) + return one; + + /* +-NaN return x+y */ + if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || + iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0))) + return x + y; + + /* determine if y is an odd int when x < 0 + * yisint = 0 ... y is not an integer + * yisint = 1 ... y is an odd int + * yisint = 2 ... y is an even int + */ + yisint = 0; + if (hx < 0) { + if (iy >= 0x43400000) + yisint = 2; /* even integer y */ + else if (iy >= 0x3ff00000) { + k = (iy >> 20) - 0x3ff; /* exponent */ + if (k > 20) { + j = ly >> (52 - k); + if ((j << (52 - k)) == ly) + yisint = 2 - (j & 1); + } else if (ly == 0) { + j = iy >> (20 - k); + if ((j << (20 - k)) == iy) + yisint = 2 - (j & 1); + } + } + } + + /* special value of y */ + if (ly == 0) { + if (iy == 0x7ff00000) { /* y is +-inf */ + if (((ix - 0x3ff00000) | lx) == 0) + return y - y; /* inf**+-1 is NaN */ + else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ + return (hy >= 0) ? y : zero; + else /* (|x|<1)**-,+inf = inf,0 */ + return (hy < 0) ? -y : zero; + } + if (iy == 0x3ff00000) { /* y is +-1 */ + if (hy < 0) + return one / x; + else + return x; + } + if (hy == 0x40000000) + return x * x; /* y is 2 */ + if (hy == 0x3fe00000) { /* y is 0.5 */ + if (hx >= 0) /* x >= +0 */ + return __ieee754_sqrt(x); + } + } + + ax = fabs(x); + /* special value of x */ + if (lx == 0) { + if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { + z = ax; /*x is +-0,+-inf,+-1 */ + if (hy < 0) + z = one / z; /* z = (1/|x|) */ + if (hx < 0) { + if (((ix - 0x3ff00000) | yisint) == 0) { + z = (z - z) / (z - z); /* (-1)**non-int is NaN */ + } else if (yisint == 1) + z = -z; /* (x<0)**odd = -(|x|**odd) */ + } + return z; + } + } + + /* (x<0)**(non-int) is NaN */ + if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) + return (x - x) / (x - x); + + /* |y| is huge */ + if (iy > 0x41e00000) { /* if |y| > 2**31 */ + if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ + if (ix <= 0x3fefffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix >= 0x3ff00000) + return (hy > 0) ? huge * huge : tiny * tiny; + } + /* over/underflow if x is not close to one */ + if (ix < 0x3fefffff) + return (hy < 0) ? huge * huge : tiny * tiny; + if (ix > 0x3ff00000) + return (hy > 0) ? huge * huge : tiny * tiny; + /* now |1-x| is tiny <= 2**-20, suffice to compute + log(x) by x-x^2/2+x^3/3-x^4/4 */ + t = x - 1; /* t has 20 trailing zeros */ + w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); + u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ + v = t * ivln2_l - w * ivln2; + t1 = u + v; + SET_LOW_WORD(t1, 0); + t2 = v - (t1 - u); + } else { + double s2, s_h, s_l, t_h, t_l; + n = 0; + /* take care subnormal number */ + if (ix < 0x00100000) { + ax *= two53; + n -= 53; + GET_HIGH_WORD(ix, ax); + } + n += ((ix) >> 20) - 0x3ff; + j = ix & 0x000fffff; + /* determine interval */ + ix = j | 0x3ff00000; /* normalize ix */ + if (j <= 0x3988E) + k = 0; /* |x|<sqrt(3/2) */ + else if (j < 0xBB67A) + k = 1; /* |x|<sqrt(3) */ + else { + k = 0; + n += 1; + ix -= 0x00100000; + } + SET_HIGH_WORD(ax, ix); + + /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ + u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ + v = one / (ax + bp[k]); + s = u * v; + s_h = s; + SET_LOW_WORD(s_h, 0); + /* t_h=ax+bp[k] High */ + t_h = zero; + SET_HIGH_WORD(t_h, + ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); + t_l = ax - (t_h - bp[k]); + s_l = v * ((u - s_h * t_h) - s_h * t_l); + /* compute log(ax) */ + s2 = s * s; + r = s2 * s2 * (L1 + + s2 * (L2 + + s2 * (L3 + + s2 * (L4 + s2 * (L5 + s2 * L6))))); + r += s_l * (s_h + s); + s2 = s_h * s_h; + t_h = 3.0 + s2 + r; + SET_LOW_WORD(t_h, 0); + t_l = r - ((t_h - 3.0) - s2); + /* u+v = s*(1+...) */ + u = s_h * t_h; + v = s_l * t_h + t_l * s; + /* 2/(3log2)*(s+...) */ + p_h = u + v; + SET_LOW_WORD(p_h, 0); + p_l = v - (p_h - u); + z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ + z_l = cp_l * p_h + p_l * cp + dp_l[k]; + /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ + t = (double) n; + t1 = (((z_h + z_l) + dp_h[k]) + t); + SET_LOW_WORD(t1, 0); + t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); + } + + s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ + if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) + s = -one; /* (-ve)**(odd int) */ + + /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ + y1 = y; + SET_LOW_WORD(y1, 0); + p_l = (y - y1) * t1 + y * t2; + p_h = y1 * t1; + z = p_l + p_h; + EXTRACT_WORDS(j, i, z); + if (j >= 0x40900000) { /* z >= 1024 */ + if (((j - 0x40900000) | i) != 0) /* if z > 1024 */ + return s * huge * huge; /* overflow */ + else { + if (p_l + ovt > z - p_h) + return s * huge * huge; /* overflow */ + } + } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ + if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */ + return s * tiny * tiny; /* underflow */ + else { + if (p_l <= z - p_h) + return s * tiny * tiny; /* underflow */ + } + } + /* + * compute 2**(p_h+p_l) + */ + i = j & 0x7fffffff; + k = (i >> 20) - 0x3ff; + n = 0; + if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ + n = j + (0x00100000 >> (k + 1)); + k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ + t = zero; + SET_HIGH_WORD(t, n & ~(0x000fffff >> k)); + n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); + if (j < 0) + n = -n; + p_h -= t; + } + t = p_l + p_h; + SET_LOW_WORD(t, 0); + u = t * lg2_h; + v = (p_l - (t - p_h)) * lg2 + t * lg2_l; + z = u + v; + w = v - (z - u); + t = z * z; + t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); + r = (z * t1) / (t1 - two) - (w + z * w); + z = one - (r - z); + GET_HIGH_WORD(j, z); + j += (n << 20); + if ((j >> 20) <= 0) + z = scalbn(z, n); /* subnormal output */ + else + SET_HIGH_WORD(z, j); + return s * z; + }