Mercurial > sdl-ios-xcode
comparison src/libm/e_pow.c @ 2756:a98604b691c8
Expanded the libm support and put it into a separate directory.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 15 Sep 2008 06:33:23 +0000 |
parents | |
children | 9ac6f0782dd6 |
comparison
equal
deleted
inserted
replaced
2755:2a3ec308d995 | 2756:a98604b691c8 |
---|---|
1 /* @(#)e_pow.c 5.1 93/09/24 */ | |
2 /* | |
3 * ==================================================== | |
4 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | |
5 * | |
6 * Developed at SunPro, a Sun Microsystems, Inc. business. | |
7 * Permission to use, copy, modify, and distribute this | |
8 * software is freely granted, provided that this notice | |
9 * is preserved. | |
10 * ==================================================== | |
11 */ | |
12 | |
13 #if defined(LIBM_SCCS) && !defined(lint) | |
14 static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $"; | |
15 #endif | |
16 | |
17 /* __ieee754_pow(x,y) return x**y | |
18 * | |
19 * n | |
20 * Method: Let x = 2 * (1+f) | |
21 * 1. Compute and return log2(x) in two pieces: | |
22 * log2(x) = w1 + w2, | |
23 * where w1 has 53-24 = 29 bit trailing zeros. | |
24 * 2. Perform y*log2(x) = n+y' by simulating muti-precision | |
25 * arithmetic, where |y'|<=0.5. | |
26 * 3. Return x**y = 2**n*exp(y'*log2) | |
27 * | |
28 * Special cases: | |
29 * 1. (anything) ** 0 is 1 | |
30 * 2. (anything) ** 1 is itself | |
31 * 3. (anything) ** NAN is NAN | |
32 * 4. NAN ** (anything except 0) is NAN | |
33 * 5. +-(|x| > 1) ** +INF is +INF | |
34 * 6. +-(|x| > 1) ** -INF is +0 | |
35 * 7. +-(|x| < 1) ** +INF is +0 | |
36 * 8. +-(|x| < 1) ** -INF is +INF | |
37 * 9. +-1 ** +-INF is NAN | |
38 * 10. +0 ** (+anything except 0, NAN) is +0 | |
39 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 | |
40 * 12. +0 ** (-anything except 0, NAN) is +INF | |
41 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF | |
42 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) | |
43 * 15. +INF ** (+anything except 0,NAN) is +INF | |
44 * 16. +INF ** (-anything except 0,NAN) is +0 | |
45 * 17. -INF ** (anything) = -0 ** (-anything) | |
46 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) | |
47 * 19. (-anything except 0 and inf) ** (non-integer) is NAN | |
48 * | |
49 * Accuracy: | |
50 * pow(x,y) returns x**y nearly rounded. In particular | |
51 * pow(integer,integer) | |
52 * always returns the correct integer provided it is | |
53 * representable. | |
54 * | |
55 * Constants : | |
56 * The hexadecimal values are the intended ones for the following | |
57 * constants. The decimal values may be used, provided that the | |
58 * compiler will convert from decimal to binary accurately enough | |
59 * to produce the hexadecimal values shown. | |
60 */ | |
61 | |
62 #include "math.h" | |
63 #include "math_private.h" | |
64 | |
65 libm_hidden_proto(scalbn) | |
66 libm_hidden_proto(fabs) | |
67 #ifdef __STDC__ | |
68 static const double | |
69 #else | |
70 static double | |
71 #endif | |
72 bp[] = { 1.0, 1.5, }, dp_h[] = { | |
73 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ | |
74 | |
75 dp_l[] = { | |
76 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ | |
77 | |
78 zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ | |
79 huge = 1.0e300, tiny = 1.0e-300, | |
80 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ | |
81 L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ | |
82 L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ | |
83 L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ | |
84 L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ | |
85 L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ | |
86 L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ | |
87 P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ | |
88 P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ | |
89 P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ | |
90 P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ | |
91 P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ | |
92 lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ | |
93 lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ | |
94 lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ | |
95 ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ | |
96 cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ | |
97 cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ | |
98 cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */ | |
99 ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ | |
100 ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */ | |
101 ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */ | |
102 | |
103 #ifdef __STDC__ | |
104 double attribute_hidden __ieee754_pow(double x, double y) | |
105 #else | |
106 double attribute_hidden __ieee754_pow(x, y) | |
107 double x, y; | |
108 #endif | |
109 { | |
110 double z, ax, z_h, z_l, p_h, p_l; | |
111 double y1, t1, t2, r, s, t, u, v, w; | |
112 int32_t i, j, k, yisint, n; | |
113 int32_t hx, hy, ix, iy; | |
114 u_int32_t lx, ly; | |
115 | |
116 EXTRACT_WORDS(hx, lx, x); | |
117 EXTRACT_WORDS(hy, ly, y); | |
118 ix = hx & 0x7fffffff; | |
119 iy = hy & 0x7fffffff; | |
120 | |
121 /* y==zero: x**0 = 1 */ | |
122 if ((iy | ly) == 0) | |
123 return one; | |
124 | |
125 /* +-NaN return x+y */ | |
126 if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || | |
127 iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0))) | |
128 return x + y; | |
129 | |
130 /* determine if y is an odd int when x < 0 | |
131 * yisint = 0 ... y is not an integer | |
132 * yisint = 1 ... y is an odd int | |
133 * yisint = 2 ... y is an even int | |
134 */ | |
135 yisint = 0; | |
136 if (hx < 0) { | |
137 if (iy >= 0x43400000) | |
138 yisint = 2; /* even integer y */ | |
139 else if (iy >= 0x3ff00000) { | |
140 k = (iy >> 20) - 0x3ff; /* exponent */ | |
141 if (k > 20) { | |
142 j = ly >> (52 - k); | |
143 if ((j << (52 - k)) == ly) | |
144 yisint = 2 - (j & 1); | |
145 } else if (ly == 0) { | |
146 j = iy >> (20 - k); | |
147 if ((j << (20 - k)) == iy) | |
148 yisint = 2 - (j & 1); | |
149 } | |
150 } | |
151 } | |
152 | |
153 /* special value of y */ | |
154 if (ly == 0) { | |
155 if (iy == 0x7ff00000) { /* y is +-inf */ | |
156 if (((ix - 0x3ff00000) | lx) == 0) | |
157 return y - y; /* inf**+-1 is NaN */ | |
158 else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ | |
159 return (hy >= 0) ? y : zero; | |
160 else /* (|x|<1)**-,+inf = inf,0 */ | |
161 return (hy < 0) ? -y : zero; | |
162 } | |
163 if (iy == 0x3ff00000) { /* y is +-1 */ | |
164 if (hy < 0) | |
165 return one / x; | |
166 else | |
167 return x; | |
168 } | |
169 if (hy == 0x40000000) | |
170 return x * x; /* y is 2 */ | |
171 if (hy == 0x3fe00000) { /* y is 0.5 */ | |
172 if (hx >= 0) /* x >= +0 */ | |
173 return __ieee754_sqrt(x); | |
174 } | |
175 } | |
176 | |
177 ax = fabs(x); | |
178 /* special value of x */ | |
179 if (lx == 0) { | |
180 if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { | |
181 z = ax; /*x is +-0,+-inf,+-1 */ | |
182 if (hy < 0) | |
183 z = one / z; /* z = (1/|x|) */ | |
184 if (hx < 0) { | |
185 if (((ix - 0x3ff00000) | yisint) == 0) { | |
186 z = (z - z) / (z - z); /* (-1)**non-int is NaN */ | |
187 } else if (yisint == 1) | |
188 z = -z; /* (x<0)**odd = -(|x|**odd) */ | |
189 } | |
190 return z; | |
191 } | |
192 } | |
193 | |
194 /* (x<0)**(non-int) is NaN */ | |
195 if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) | |
196 return (x - x) / (x - x); | |
197 | |
198 /* |y| is huge */ | |
199 if (iy > 0x41e00000) { /* if |y| > 2**31 */ | |
200 if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ | |
201 if (ix <= 0x3fefffff) | |
202 return (hy < 0) ? huge * huge : tiny * tiny; | |
203 if (ix >= 0x3ff00000) | |
204 return (hy > 0) ? huge * huge : tiny * tiny; | |
205 } | |
206 /* over/underflow if x is not close to one */ | |
207 if (ix < 0x3fefffff) | |
208 return (hy < 0) ? huge * huge : tiny * tiny; | |
209 if (ix > 0x3ff00000) | |
210 return (hy > 0) ? huge * huge : tiny * tiny; | |
211 /* now |1-x| is tiny <= 2**-20, suffice to compute | |
212 log(x) by x-x^2/2+x^3/3-x^4/4 */ | |
213 t = x - 1; /* t has 20 trailing zeros */ | |
214 w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); | |
215 u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ | |
216 v = t * ivln2_l - w * ivln2; | |
217 t1 = u + v; | |
218 SET_LOW_WORD(t1, 0); | |
219 t2 = v - (t1 - u); | |
220 } else { | |
221 double s2, s_h, s_l, t_h, t_l; | |
222 n = 0; | |
223 /* take care subnormal number */ | |
224 if (ix < 0x00100000) { | |
225 ax *= two53; | |
226 n -= 53; | |
227 GET_HIGH_WORD(ix, ax); | |
228 } | |
229 n += ((ix) >> 20) - 0x3ff; | |
230 j = ix & 0x000fffff; | |
231 /* determine interval */ | |
232 ix = j | 0x3ff00000; /* normalize ix */ | |
233 if (j <= 0x3988E) | |
234 k = 0; /* |x|<sqrt(3/2) */ | |
235 else if (j < 0xBB67A) | |
236 k = 1; /* |x|<sqrt(3) */ | |
237 else { | |
238 k = 0; | |
239 n += 1; | |
240 ix -= 0x00100000; | |
241 } | |
242 SET_HIGH_WORD(ax, ix); | |
243 | |
244 /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ | |
245 u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ | |
246 v = one / (ax + bp[k]); | |
247 s = u * v; | |
248 s_h = s; | |
249 SET_LOW_WORD(s_h, 0); | |
250 /* t_h=ax+bp[k] High */ | |
251 t_h = zero; | |
252 SET_HIGH_WORD(t_h, | |
253 ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); | |
254 t_l = ax - (t_h - bp[k]); | |
255 s_l = v * ((u - s_h * t_h) - s_h * t_l); | |
256 /* compute log(ax) */ | |
257 s2 = s * s; | |
258 r = s2 * s2 * (L1 + | |
259 s2 * (L2 + | |
260 s2 * (L3 + | |
261 s2 * (L4 + s2 * (L5 + s2 * L6))))); | |
262 r += s_l * (s_h + s); | |
263 s2 = s_h * s_h; | |
264 t_h = 3.0 + s2 + r; | |
265 SET_LOW_WORD(t_h, 0); | |
266 t_l = r - ((t_h - 3.0) - s2); | |
267 /* u+v = s*(1+...) */ | |
268 u = s_h * t_h; | |
269 v = s_l * t_h + t_l * s; | |
270 /* 2/(3log2)*(s+...) */ | |
271 p_h = u + v; | |
272 SET_LOW_WORD(p_h, 0); | |
273 p_l = v - (p_h - u); | |
274 z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ | |
275 z_l = cp_l * p_h + p_l * cp + dp_l[k]; | |
276 /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ | |
277 t = (double) n; | |
278 t1 = (((z_h + z_l) + dp_h[k]) + t); | |
279 SET_LOW_WORD(t1, 0); | |
280 t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); | |
281 } | |
282 | |
283 s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ | |
284 if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) | |
285 s = -one; /* (-ve)**(odd int) */ | |
286 | |
287 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ | |
288 y1 = y; | |
289 SET_LOW_WORD(y1, 0); | |
290 p_l = (y - y1) * t1 + y * t2; | |
291 p_h = y1 * t1; | |
292 z = p_l + p_h; | |
293 EXTRACT_WORDS(j, i, z); | |
294 if (j >= 0x40900000) { /* z >= 1024 */ | |
295 if (((j - 0x40900000) | i) != 0) /* if z > 1024 */ | |
296 return s * huge * huge; /* overflow */ | |
297 else { | |
298 if (p_l + ovt > z - p_h) | |
299 return s * huge * huge; /* overflow */ | |
300 } | |
301 } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ | |
302 if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */ | |
303 return s * tiny * tiny; /* underflow */ | |
304 else { | |
305 if (p_l <= z - p_h) | |
306 return s * tiny * tiny; /* underflow */ | |
307 } | |
308 } | |
309 /* | |
310 * compute 2**(p_h+p_l) | |
311 */ | |
312 i = j & 0x7fffffff; | |
313 k = (i >> 20) - 0x3ff; | |
314 n = 0; | |
315 if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ | |
316 n = j + (0x00100000 >> (k + 1)); | |
317 k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ | |
318 t = zero; | |
319 SET_HIGH_WORD(t, n & ~(0x000fffff >> k)); | |
320 n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); | |
321 if (j < 0) | |
322 n = -n; | |
323 p_h -= t; | |
324 } | |
325 t = p_l + p_h; | |
326 SET_LOW_WORD(t, 0); | |
327 u = t * lg2_h; | |
328 v = (p_l - (t - p_h)) * lg2 + t * lg2_l; | |
329 z = u + v; | |
330 w = v - (z - u); | |
331 t = z * z; | |
332 t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); | |
333 r = (z * t1) / (t1 - two) - (w + z * w); | |
334 z = one - (r - z); | |
335 GET_HIGH_WORD(j, z); | |
336 j += (n << 20); | |
337 if ((j >> 20) <= 0) | |
338 z = scalbn(z, n); /* subnormal output */ | |
339 else | |
340 SET_HIGH_WORD(z, j); | |
341 return s * z; | |
342 } |