Mercurial > pylearn
annotate mlp_factory_approach.py @ 189:8f58abb943d4
many changes to NeuralNet
author | James Bergstra <bergstrj@iro.umontreal.ca> |
---|---|
date | Wed, 14 May 2008 14:50:07 -0400 |
parents | ebbb0e749565 |
children | aa7a3ecbcc90 |
rev | line source |
---|---|
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
1 import dataset |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
2 import theano |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
3 import theano.tensor as t |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
4 import numpy |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
5 import nnet_ops |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
6 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
7 def _randshape(*shape): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
8 return (numpy.random.rand(*shape) -0.5) * 0.001 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
9 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
10 class NeuralNet(object): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
11 |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
12 class _Model(object): |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
13 def __init__(self, nnet, params): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
14 self.nnet = nnet |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
15 self.params = params |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
16 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
17 def update(self, trainset, stopper=None): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
18 """Update this model from more training data.""" |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
19 v = self.nnet.v |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
20 params = self.params |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
21 update_fn = self.nnet._fn([v.input, v.target] + v.params, [v.nll] + v.new_params) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
22 if stopper is not None: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
23 raise NotImplementedError() |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
24 else: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
25 for i in xrange(100): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
26 for input, target in trainset.minibatches(['input', 'target'], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
27 minibatch_size=min(32, len(trainset))): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
28 dummy = update_fn(input, target[:,0], *params) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
29 if 0: print dummy[0] #the nll |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
30 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
31 def __call__(self, testset, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
32 output_fieldnames=['output_class'], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
33 test_stats_collector=None, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
34 copy_inputs=False, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
35 put_stats_in_output_dataset=True, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
36 output_attributes=[]): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
37 """Apply this model (as a function) to new data""" |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
38 v = self.nnet.v |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
39 outputs = [getattr(self.nnet.v, name) for name in output_fieldnames] |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
40 if 'target' in testset: |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
41 fn = self.nnet._fn([v.input, v.target] + v.params, outputs) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
42 return dataset.ApplyFunctionDataSet(testset, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
43 lambda input, target: fn(input, target[:,0], *self.params), |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
44 output_fieldnames) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
45 else: |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
46 fn = self.nnet._fn([v.input] + v.params, outputs) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
47 return dataset.ApplyFunctionDataSet(testset, |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
48 lambda input: fn(input, *self.params), |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
49 output_fieldnames) |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
50 def _fn(self, inputs, outputs): |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
51 #it is possible for this function to implement function caching |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
52 #... but not necessarily desirable. |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
53 #- caching ruins the possibility of multi-threaded learning |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
54 #- caching demands more efficiency in the face of resizing inputs |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
55 #- caching makes it really hard to borrow references to function outputs |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
56 return theano.function(inputs, outputs, unpack_single=False, linker=self.linker) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
57 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
58 def __init__(self, ninputs, nhid, nclass, lr, nepochs, |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
59 l2coef=0.0, |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
60 linker='c&py', |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
61 hidden_layer=None): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
62 class Vars: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
63 def __init__(self, lr, l2coef): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
64 lr = t.constant(lr) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
65 l2coef = t.constant(l2coef) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
66 input = t.matrix('input') # n_examples x n_inputs |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
67 target = t.ivector('target') # n_examples x 1 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
68 W2 = t.matrix('W2') |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
69 b2 = t.vector('b2') |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
70 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
71 if hidden_layer: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
72 hid, hid_params, hid_ivals, hid_regularization = hidden_layer(input) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
73 else: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
74 W1 = t.matrix('W1') |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
75 b1 = t.vector('b1') |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
76 hid = t.tanh(b1 + t.dot(input, W1)) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
77 hid_params = [W1, b1] |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
78 hid_regularization = l2coef * t.sum(W1*W1) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
79 hid_ivals = lambda : [_randshape(ninputs, nhid), _randshape(nhid)] |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
80 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
81 params = [W2, b2] + hid_params |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
82 activations = b2 + t.dot(hid, W2) |
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
83 nll, predictions = nnet_ops.crossentropy_softmax_1hot(activations, target) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
84 regularization = l2coef * t.sum(W2*W2) + hid_regularization |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
85 output_class = t.argmax(activations,1) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
86 loss_01 = t.neq(output_class, target) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
87 g_params = t.grad(nll + regularization, params) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
88 new_params = [t.sub_inplace(p, lr * gp) for p,gp in zip(params, g_params)] |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
89 self.__dict__.update(locals()); del self.self |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
90 self.nhid = nhid |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
91 self.nclass = nclass |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
92 self.nepochs = nepochs |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
93 self.v = Vars(lr, l2coef) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
94 self.params = None |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
95 self.linker = linker |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
96 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
97 def __call__(self, trainset=None, iparams=None): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
98 if iparams is None: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
99 iparams = [_randshape(self.nhid, self.nclass), _randshape(self.nclass)]\ |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
100 + self.v.hid_ivals() |
189
8f58abb943d4
many changes to NeuralNet
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
187
diff
changeset
|
101 rval = NeuralNet._Model(self, iparams) |
187
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
102 if trainset: |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
103 rval.update(trainset) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
104 return rval |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
105 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
106 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
107 if __name__ == '__main__': |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
108 training_set1 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
109 [0, 1, 1], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
110 [1, 0, 1], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
111 [1, 1, 1]]), |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
112 {'input':slice(2),'target':2}) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
113 training_set2 = dataset.ArrayDataSet(numpy.array([[0, 0, 0], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
114 [0, 1, 1], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
115 [1, 0, 0], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
116 [1, 1, 1]]), |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
117 {'input':slice(2),'target':2}) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
118 test_data = dataset.ArrayDataSet(numpy.array([[0, 0, 0], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
119 [0, 1, 1], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
120 [1, 0, 0], |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
121 [1, 1, 1]]), |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
122 {'input':slice(2)}) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
123 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
124 learn_algo = NeuralNet(2, 10, 3, .1, 1000) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
125 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
126 model1 = learn_algo(training_set1) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
127 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
128 model2 = learn_algo(training_set2) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
129 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
130 n_match = 0 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
131 for o1, o2 in zip(model1(test_data), model2(test_data)): |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
132 n_match += (o1 == o2) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
133 |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
134 print n_match, numpy.sum(training_set1.fields()['target'] == |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
135 training_set2.fields()['target']) |
ebbb0e749565
added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff
changeset
|
136 |