annotate mlp_factory_approach.py @ 187:ebbb0e749565

added mlp_factory_approach
author James Bergstra <bergstrj@iro.umontreal.ca>
date Wed, 14 May 2008 11:51:08 -0400
parents
children 8f58abb943d4 f2ddc795ec49
rev   line source
187
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
1 import dataset
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
2 import theano
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
3 import theano.tensor as t
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
4 import numpy
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
5 import nnet_ops
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
6
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
7 def _randshape(*shape):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
8 return (numpy.random.rand(*shape) -0.5) * 0.001
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
9 def _function(inputs, outputs, linker='c&py'):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
10 return theano.function(inputs, outputs, unpack_single=False,linker=linker)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
11
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
12 class NeuralNet(object):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
13
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
14 class Model(object):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
15 def __init__(self, nnet, params):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
16 self.nnet = nnet
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
17 self.params = params
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
18
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
19 def update(self, trainset, stopper=None):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
20 """Update this model from more training data."""
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
21 v = self.nnet.v
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
22 params = self.params
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
23 update_fn = _function([v.input, v.target] + v.params, [v.nll] + v.new_params)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
24 if stopper is not None:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
25 raise NotImplementedError()
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
26 else:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
27 for i in xrange(100):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
28 for input, target in trainset.minibatches(['input', 'target'],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
29 minibatch_size=min(32, len(trainset))):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
30 dummy = update_fn(input, target[:,0], *params)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
31 if 0: print dummy[0] #the nll
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
32
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
33 def __call__(self, testset,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
34 output_fieldnames=['output_class'],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
35 test_stats_collector=None,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
36 copy_inputs=False,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
37 put_stats_in_output_dataset=True,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
38 output_attributes=[]):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
39 """Apply this model (as a function) to new data"""
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
40 inputs = [self.nnet.v.input, self.nnet.v.target] + self.nnet.v.params
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
41 fn = _function(inputs, [getattr(self.nnet.v, name) for name in output_fieldnames])
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
42 if 'target' in testset.fields():
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
43 return dataset.ApplyFunctionDataSet(testset,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
44 lambda input, target: fn(input, target[:,0], *self.params),
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
45 output_fieldnames)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
46 else:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
47 return dataset.ApplyFunctionDataSet(testset,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
48 lambda input: fn(input, numpy.zeros(1,dtype='int64'), *self.params),
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
49 output_fieldnames)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
50
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
51 def __init__(self, ninputs, nhid, nclass, lr, nepochs,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
52 l2coef=0.0,
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
53 linker='c&yp',
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
54 hidden_layer=None):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
55 class Vars:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
56 def __init__(self, lr, l2coef):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
57 lr = t.constant(lr)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
58 l2coef = t.constant(l2coef)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
59 input = t.matrix('input') # n_examples x n_inputs
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
60 target = t.ivector('target') # n_examples x 1
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
61 W2 = t.matrix('W2')
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
62 b2 = t.vector('b2')
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
63
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
64 if hidden_layer:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
65 hid, hid_params, hid_ivals, hid_regularization = hidden_layer(input)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
66 else:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
67 W1 = t.matrix('W1')
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
68 b1 = t.vector('b1')
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
69 hid = t.tanh(b1 + t.dot(input, W1))
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
70 hid_params = [W1, b1]
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
71 hid_regularization = l2coef * t.sum(W1*W1)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
72 hid_ivals = lambda : [_randshape(ninputs, nhid), _randshape(nhid)]
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
73
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
74 params = [W2, b2] + hid_params
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
75 nll, predictions = nnet_ops.crossentropy_softmax_1hot( b2 + t.dot(hid, W2), target)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
76 regularization = l2coef * t.sum(W2*W2) + hid_regularization
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
77 output_class = t.argmax(predictions,1)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
78 loss_01 = t.neq(output_class, target)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
79 g_params = t.grad(nll + regularization, params)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
80 new_params = [t.sub_inplace(p, lr * gp) for p,gp in zip(params, g_params)]
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
81 self.__dict__.update(locals()); del self.self
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
82 self.nhid = nhid
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
83 self.nclass = nclass
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
84 self.nepochs = nepochs
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
85 self.v = Vars(lr, l2coef)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
86 self.params = None
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
87
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
88 def __call__(self, trainset=None, iparams=None):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
89 if iparams is None:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
90 iparams = [_randshape(self.nhid, self.nclass), _randshape(self.nclass)]\
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
91 + self.v.hid_ivals()
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
92 rval = NeuralNet.Model(self, iparams)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
93 if trainset:
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
94 rval.update(trainset)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
95 return rval
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
96
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
97
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
98 if __name__ == '__main__':
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
99 training_set1 = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
100 [0, 1, 1],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
101 [1, 0, 1],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
102 [1, 1, 1]]),
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
103 {'input':slice(2),'target':2})
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
104 training_set2 = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
105 [0, 1, 1],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
106 [1, 0, 0],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
107 [1, 1, 1]]),
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
108 {'input':slice(2),'target':2})
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
109 test_data = dataset.ArrayDataSet(numpy.array([[0, 0, 0],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
110 [0, 1, 1],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
111 [1, 0, 0],
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
112 [1, 1, 1]]),
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
113 {'input':slice(2)})
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
114
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
115 learn_algo = NeuralNet(2, 10, 3, .1, 1000)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
116
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
117 model1 = learn_algo(training_set1)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
118
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
119 model2 = learn_algo(training_set2)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
120
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
121 n_match = 0
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
122 for o1, o2 in zip(model1(test_data), model2(test_data)):
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
123 n_match += (o1 == o2)
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
124
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
125 print n_match, numpy.sum(training_set1.fields()['target'] ==
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
126 training_set2.fields()['target'])
ebbb0e749565 added mlp_factory_approach
James Bergstra <bergstrj@iro.umontreal.ca>
parents:
diff changeset
127