Mercurial > ift6266
annotate writeup/nips2010_submission.tex @ 475:ead3085c1c66
Added charts to nips2010_submission.tex
author | fsavard |
---|---|
date | Sun, 30 May 2010 12:04:05 -0400 |
parents | d02d288257bf |
children | db28764b8252 |
rev | line source |
---|---|
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
1 \documentclass{article} % For LaTeX2e |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
2 \usepackage{nips10submit_e,times} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
3 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
4 \usepackage{amsthm,amsmath,amssymb,bbold,bbm} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
5 \usepackage{algorithm,algorithmic} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
6 \usepackage[utf8]{inputenc} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
7 \usepackage{graphicx,subfigure} |
469 | 8 \usepackage[numbers]{natbib} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
9 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
10 \title{Generating and Exploiting Perturbed and Multi-Task Handwritten Training Data for Deep Architectures} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
11 \author{The IFT6266 Gang} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
12 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
13 \begin{document} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
14 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
15 %\makeanontitle |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
16 \maketitle |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
17 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
18 \begin{abstract} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
19 Recent theoretical and empirical work in statistical machine learning has |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
20 demonstrated the importance of learning algorithms for deep |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
21 architectures, i.e., function classes obtained by composing multiple |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
22 non-linear transformations. In the area of handwriting recognition, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
23 deep learning algorithms |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
24 had been evaluated on rather small datasets with a few tens of thousands |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
25 of examples. Here we propose a powerful generator of variations |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
26 of examples for character images based on a pipeline of stochastic |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
27 transformations that include not only the usual affine transformations |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
28 but also the addition of slant, local elastic deformations, changes |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
29 in thickness, background images, color, contrast, occlusion, and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
30 various types of pixel and spatially correlated noise. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
31 We evaluate a deep learning algorithm (Stacked Denoising Autoencoders) |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
32 on the task of learning to classify digits and letters transformed |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
33 with this pipeline, using the hundreds of millions of generated examples |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
34 and testing on the full 62-class NIST test set. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
35 We find that the SDA outperforms its |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
36 shallow counterpart, an ordinary Multi-Layer Perceptron, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
37 and that it is better able to take advantage of the additional |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
38 generated data, as well as better able to take advantage of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
39 the multi-task setting, i.e., |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
40 training from more classes than those of interest in the end. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
41 In fact, we find that the SDA reaches human performance as |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
42 estimated by the Amazon Mechanical Turk on the 62-class NIST test characters. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
43 \end{abstract} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
44 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
45 \section{Introduction} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
46 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
47 Deep Learning has emerged as a promising new area of research in |
469 | 48 statistical machine learning (see~\citet{Bengio-2009} for a review). |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
49 Learning algorithms for deep architectures are centered on the learning |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
50 of useful representations of data, which are better suited to the task at hand. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
51 This is in great part inspired by observations of the mammalian visual cortex, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
52 which consists of a chain of processing elements, each of which is associated with a |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
53 different representation. In fact, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
54 it was found recently that the features learnt in deep architectures resemble |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
55 those observed in the first two of these stages (in areas V1 and V2 |
469 | 56 of visual cortex)~\citep{HonglakL2008}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
57 Processing images typically involves transforming the raw pixel data into |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
58 new {\bf representations} that can be used for analysis or classification. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
59 For example, a principal component analysis representation linearly projects |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
60 the input image into a lower-dimensional feature space. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
61 Why learn a representation? Current practice in the computer vision |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
62 literature converts the raw pixels into a hand-crafted representation |
469 | 63 e.g.\ SIFT features~\citep{Lowe04}, but deep learning algorithms |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
64 tend to discover similar features in their first few |
469 | 65 levels~\citep{HonglakL2008,ranzato-08,Koray-08,VincentPLarochelleH2008-very-small}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
66 Learning increases the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
67 ease and practicality of developing representations that are at once |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
68 tailored to specific tasks, yet are able to borrow statistical strength |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
69 from other related tasks (e.g., modeling different kinds of objects). Finally, learning the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
70 feature representation can lead to higher-level (more abstract, more |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
71 general) features that are more robust to unanticipated sources of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
72 variance extant in real data. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
73 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
74 Whereas a deep architecture can in principle be more powerful than a |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
75 shallow one in terms of representation, depth appears to render the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
76 training problem more difficult in terms of optimization and local minima. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
77 It is also only recently that successful algorithms were proposed to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
78 overcome some of these difficulties. All are based on unsupervised |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
79 learning, often in an greedy layer-wise ``unsupervised pre-training'' |
469 | 80 stage~\citep{Bengio-2009}. One of these layer initialization techniques, |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
81 applied here, is the Denoising |
469 | 82 Auto-Encoder~(DEA)~\citep{VincentPLarochelleH2008-very-small}, which |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
83 performed similarly or better than previously proposed Restricted Boltzmann |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
84 Machines in terms of unsupervised extraction of a hierarchy of features |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
85 useful for classification. The principle is that each layer starting from |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
86 the bottom is trained to encode their input (the output of the previous |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
87 layer) and try to reconstruct it from a corrupted version of it. After this |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
88 unsupervised initialization, the stack of denoising auto-encoders can be |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
89 converted into a deep supervised feedforward neural network and trained by |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
90 stochastic gradient descent. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
91 |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
92 In this paper we ask the following questions: |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
93 \begin{enumerate} |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
94 \item Do the good results previously obtained with deep architectures on the |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
95 MNIST digits generalize to the setting of a much larger and richer (but similar) |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
96 dataset, the NIST special database 19, with 62 classes and around 800k examples? |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
97 \item To what extent does the perturbation of input images (e.g. adding |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
98 noise, affine transformations, background images) make the resulting |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
99 classifier better not only on similarly perturbed images but also on |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
100 the {\em original clean examples}? |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
101 \item Do deep architectures benefit more from such {\em out-of-distribution} |
469 | 102 examples, i.e. do they benefit more from the self-taught learning~\citep{RainaR2007} framework? |
466
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
103 \item Similarly, does the feature learning step in deep learning algorithms benefit more |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
104 training with similar but different classes (i.e. a multi-task learning scenario) than |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
105 a corresponding shallow and purely supervised architecture? |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
106 \end{enumerate} |
6205481bf33f
asking the questions
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
464
diff
changeset
|
107 The experimental results presented here provide positive evidence towards all of these questions. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
108 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
109 \section{Perturbation and Transformation of Character Images} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
110 |
467 | 111 This section describes the different transformations we used to stochastically |
112 transform source images in order to obtain data. More details can | |
469 | 113 be found in this technical report~\citep{ift6266-tr-anonymous}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
114 The code for these transformations (mostly python) is available at |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
115 {\tt http://anonymous.url.net}. All the modules in the pipeline share |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
116 a global control parameter ($0 \le complexity \le 1$) that allows one to modulate the |
467 | 117 amount of deformation or noise introduced. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
118 |
467 | 119 There are two main parts in the pipeline. The first one, |
120 from slant to pinch below, performs transformations. The second | |
121 part, from blur to contrast, adds different kinds of noise. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
122 |
467 | 123 {\large\bf Transformations}\\ |
124 {\bf Slant}\\ | |
125 We mimic slant by shifting each row of the image | |
126 proportionnaly to its height: $shift = round(slant \times height)$. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
127 The $slant$ coefficient can be negative or positive with equal probability |
467 | 128 and its value is randomly sampled according to the complexity level: |
129 e $slant \sim U[0,complexity]$, so the | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
130 maximum displacement for the lowest or highest pixel line is of |
467 | 131 $round(complexity \times 32)$.\\ |
132 {\bf Thickness}\\ | |
469 | 133 Morpholigical operators of dilation and erosion~\citep{Haralick87,Serra82} |
467 | 134 are applied. The neighborhood of each pixel is multiplied |
135 element-wise with a {\em structuring element} matrix. | |
136 The pixel value is replaced by the maximum or the minimum of the resulting | |
137 matrix, respectively for dilation or erosion. Ten different structural elements with | |
138 increasing dimensions (largest is $5\times5$) were used. For each image, | |
139 randomly sample the operator type (dilation or erosion) with equal probability and one structural | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
140 element from a subset of the $n$ smallest structuring elements where $n$ is |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
141 $round(10 \times complexity)$ for dilation and $round(6 \times complexity)$ |
467 | 142 for erosion. A neutral element is always present in the set, and if it is |
143 chosen no transformation is applied. Erosion allows only the six | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
144 smallest structural elements because when the character is too thin it may |
467 | 145 be completely erased.\\ |
146 {\bf Affine Transformations}\\ | |
147 A $2 \times 3$ affine transform matrix (with | |
148 6 parameters $(a,b,c,d,e,f)$) is sampled according to the $complexity$ level. | |
149 Each pixel $(x,y)$ of the output image takes the value of the pixel | |
150 nearest to $(ax+by+c,dx+ey+f)$ in the input image. This | |
151 produces scaling, translation, rotation and shearing. | |
152 The marginal distributions of $(a,b,c,d,e,f)$ have been tuned by hand to | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
153 forbid important rotations (not to confuse classes) but to give good |
467 | 154 variability of the transformation: $a$ and $d$ $\sim U[1-3 \times |
155 complexity,1+3 \times complexity]$, $b$ and $e$ $\sim[-3 \times complexity,3 | |
156 \times complexity]$ and $c$ and $f$ $\sim U[-4 \times complexity, 4 \times | |
157 complexity]$.\\ | |
158 {\bf Local Elastic Deformations}\\ | |
469 | 159 This filter induces a "wiggly" effect in the image, following~\citet{SimardSP03}, |
467 | 160 which provides more details. |
161 Two "displacements" fields are generated and applied, for horizontal | |
162 and vertical displacements of pixels. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
163 To generate a pixel in either field, first a value between -1 and 1 is |
467 | 164 chosen from a uniform distribution. Then all the pixels, in both fields, are |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
165 multiplied by a constant $\alpha$ which controls the intensity of the |
467 | 166 displacements (larger $\alpha$ translates into larger wiggles). |
167 Each field is convoluted with a Gaussian 2D kernel of | |
168 standard deviation $\sigma$. Visually, this results in a blur. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
169 $\alpha = \sqrt[3]{complexity} \times 10.0$ and $\sigma = 10 - 7 \times |
467 | 170 \sqrt[3]{complexity}$.\\ |
171 {\bf Pinch}\\ | |
172 This GIMP filter is named "Whirl and | |
173 pinch", but whirl was set to 0. A pinch is ``similar to projecting the image onto an elastic | |
469 | 174 surface and pressing or pulling on the center of the surface''~\citep{GIMP-manual}. |
467 | 175 For a square input image, think of drawing a circle of |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
176 radius $r$ around a center point $C$. Any point (pixel) $P$ belonging to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
177 that disk (region inside circle) will have its value recalculated by taking |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
178 the value of another "source" pixel in the original image. The position of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
179 that source pixel is found on the line thats goes through $C$ and $P$, but |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
180 at some other distance $d_2$. Define $d_1$ to be the distance between $P$ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
181 and $C$. $d_2$ is given by $d_2 = sin(\frac{\pi{}d_1}{2r})^{-pinch} \times |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
182 d_1$, where $pinch$ is a parameter to the filter. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
183 The actual value is given by bilinear interpolation considering the pixels |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
184 around the (non-integer) source position thus found. |
467 | 185 Here $pinch \sim U[-complexity, 0.7 \times complexity]$.\\ |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
186 |
467 | 187 {\large\bf Injecting Noise}\\ |
188 {\bf Motion Blur}\\ | |
189 This GIMP filter is a ``linear motion blur'' in GIMP | |
190 terminology, with two parameters, $length$ and $angle$. The value of | |
191 a pixel in the final image is the approximately mean value of the $length$ first pixels | |
192 found by moving in the $angle$ direction. | |
193 Here $angle \sim U[0,360]$ degrees, and $length \sim {\rm Normal}(0,(3 \times complexity)^2)$.\\ | |
194 {\bf Occlusion}\\ | |
195 This filter selects a random rectangle from an {\em occluder} character | |
196 images and places it over the original {\em occluded} character | |
197 image. Pixels are combined by taking the max(occluder,occluded), | |
198 closer to black. The corners of the occluder The rectangle corners | |
199 are sampled so that larger complexity gives larger rectangles. | |
200 The destination position in the occluded image are also sampled | |
469 | 201 according to a normal distribution (see more details in~\citet{ift6266-tr-anonymous}). |
467 | 202 It has has a probability of not being applied at all of 60\%.\\ |
203 {\bf Pixel Permutation}\\ | |
204 This filter permutes neighbouring pixels. It selects first | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
205 $\frac{complexity}{3}$ pixels randomly in the image. Each of them are then |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
206 sequentially exchanged to one other pixel in its $V4$ neighbourhood. Number |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
207 of exchanges to the left, right, top, bottom are equal or does not differ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
208 from more than 1 if the number of selected pixels is not a multiple of 4. |
467 | 209 It has has a probability of not being applied at all of 80\%.\\ |
210 {\bf Gaussian Noise}\\ | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
211 This filter simply adds, to each pixel of the image independently, a |
467 | 212 noise $\sim Normal(0(\frac{complexity}{10})^2)$. |
213 It has has a probability of not being applied at all of 70\%.\\ | |
214 {\bf Background Images}\\ | |
469 | 215 Following~\citet{Larochelle-jmlr-2009}, this transformation adds a random |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
216 background behind the letter. The background is chosen by first selecting, |
467 | 217 at random, an image from a set of images. Then a 32$\times$32 subregion |
218 of that image is chosen as the background image (by sampling position | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
219 uniformly while making sure not to cross image borders). |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
220 To combine the original letter image and the background image, contrast |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
221 adjustments are made. We first get the maximal values (i.e. maximal |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
222 intensity) for both the original image and the background image, $maximage$ |
467 | 223 and $maxbg$. We also have a parameter $contrast \sim U[complexity, 1]$. |
224 Each background pixel value is multiplied by $\frac{max(maximage - | |
225 contrast, 0)}{maxbg}$ (higher contrast yield darker | |
226 background). The output image pixels are max(background,original).\\ | |
227 {\bf Salt and Pepper Noise}\\ | |
228 This filter adds noise $\sim U[0,1]$ to random subsets of pixels. | |
229 The number of selected pixels is $0.2 \times complexity$. | |
230 This filter has a probability of not being applied at all of 75\%.\\ | |
231 {\bf Spatially Gaussian Noise}\\ | |
232 Different regions of the image are spatially smoothed. | |
233 The image is convolved with a symmetric Gaussian kernel of | |
234 size and variance choosen uniformly in the ranges $[12,12 + 20 \times | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
235 complexity]$ and $[2,2 + 6 \times complexity]$. The result is normalized |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
236 between $0$ and $1$. We also create a symmetric averaging window, of the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
237 kernel size, with maximum value at the center. For each image we sample |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
238 uniformly from $3$ to $3 + 10 \times complexity$ pixels that will be |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
239 averaging centers between the original image and the filtered one. We |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
240 initialize to zero a mask matrix of the image size. For each selected pixel |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
241 we add to the mask the averaging window centered to it. The final image is |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
242 computed from the following element-wise operation: $\frac{image + filtered |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
243 image \times mask}{mask+1}$. |
467 | 244 This filter has a probability of not being applied at all of 75\%.\\ |
245 {\bf Scratches}\\ | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
246 The scratches module places line-like white patches on the image. The |
467 | 247 lines are heavily transformed images of the digit "1" (one), chosen |
248 at random among five thousands such 1 images. The 1 image is | |
249 randomly cropped and rotated by an angle $\sim Normal(0,(100 \times | |
250 complexity)^2$, using bicubic interpolation, | |
251 Two passes of a greyscale morphological erosion filter | |
252 are applied, reducing the width of the line | |
253 by an amount controlled by $complexity$. | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
254 This filter is only applied only 15\% of the time. When it is applied, 50\% |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
255 of the time, only one patch image is generated and applied. In 30\% of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
256 cases, two patches are generated, and otherwise three patches are |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
257 generated. The patch is applied by taking the maximal value on any given |
467 | 258 patch or the original image, for each of the 32x32 pixel locations.\\ |
259 {\bf Color and Contrast Changes}\\ | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
260 This filter changes the constrast and may invert the image polarity (white |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
261 on black to black on white). The contrast $C$ is defined here as the |
467 | 262 difference between the maximum and the minimum pixel value of the image. |
263 Contrast $\sim U[1-0.85 \times complexity,1]$ (so constrast $\geq 0.15$). | |
264 The image is normalized into $[\frac{1-C}{2},1-\frac{1-C}{2}]$. The | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
265 polarity is inverted with $0.5$ probability. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
266 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
267 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
268 \begin{figure}[h] |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
269 \resizebox{.99\textwidth}{!}{\includegraphics{images/example_t.png}}\\ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
270 \caption{Illustration of the pipeline of stochastic |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
271 transformations applied to the image of a lower-case t |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
272 (the upper left image). Each image in the pipeline (going from |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
273 left to right, first top line, then bottom line) shows the result |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
274 of applying one of the modules in the pipeline. The last image |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
275 (bottom right) is used as training example.} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
276 \label{fig:pipeline} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
277 \end{figure} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
278 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
279 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
280 \section{Experimental Setup} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
281 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
282 \subsection{Training Datasets} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
283 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
284 \subsubsection{Data Sources} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
285 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
286 \begin{itemize} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
287 \item {\bf NIST} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
288 The NIST Special Database 19 (NIST19) is a very widely used dataset for training and testing OCR systems. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
289 The dataset is composed with 8????? digits and characters (upper and lower cases), with hand checked classifications, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
290 extracted from handwritten sample forms of 3600 writers. The characters are labelled by one of the 62 classes |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
291 corresponding to "0"-"9","A"-"Z" and "a"-"z". The dataset contains 8 series of different complexity. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
292 The fourth series, $hsf_4$, experimentally recognized to be the most difficult one for classification task is recommended |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
293 by NIST as testing set and is used in our work for that purpose. It contains 82600 examples, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
294 while the training and validation sets (which have the same distribution) contain XXXXX and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
295 XXXXX examples respectively. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
296 The performances reported by previous work on that dataset mostly use only the digits. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
297 Here we use all the classes both in the training and testing phase. This is especially |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
298 useful to estimate the effect of a multi-task setting. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
299 Note that the distribution of the classes in the NIST training and test sets differs |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
300 substantially, with relatively many more digits in the test set, and uniform distribution |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
301 of letters in the test set, not in the training set (more like the natural distribution |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
302 of letters in text). |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
303 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
304 \item {\bf Fonts} TODO!!! |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
305 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
306 \item {\bf Captchas} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
307 The Captcha data source is an adaptation of the \emph{pycaptcha} library (a python based captcha generator library) for |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
308 generating characters of the same format as the NIST dataset. The core of this data source is composed with a random character |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
309 generator and various kinds of tranformations similar to those described in the previous sections. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
310 In order to increase the variability of the data generated, different fonts are used for generating the characters. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
311 Transformations (slant, distorsions, rotation, translation) are applied to each randomly generated character with a complexity |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
312 depending on the value of the complexity parameter provided by the user of the data source. Two levels of complexity are |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
313 allowed and can be controlled via an easy to use facade class. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
314 \item {\bf OCR data} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
315 \end{itemize} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
316 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
317 \subsubsection{Data Sets} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
318 \begin{itemize} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
319 \item {\bf NIST} This is the raw NIST special database 19. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
320 \item {\bf P07} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
321 The dataset P07 is sampled with our transformation pipeline with a complexity parameter of $0.7$. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
322 For each new exemple to generate, we choose one source with the following probability: $0.1$ for the fonts, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
323 $0.25$ for the captchas, $0.25$ for OCR data and $0.4$ for NIST. We apply all the transformations in their order |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
324 and for each of them we sample uniformly a complexity in the range $[0,0.7]$. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
325 \item {\bf NISTP} NISTP is equivalent to P07 (complexity parameter of $0.7$ with the same sources proportion) |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
326 except that we only apply |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
327 transformations from slant to pinch. Therefore, the character is |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
328 transformed but no additionnal noise is added to the image, giving images |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
329 closer to the NIST dataset. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
330 \end{itemize} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
331 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
332 \subsection{Models and their Hyperparameters} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
333 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
334 \subsubsection{Multi-Layer Perceptrons (MLP)} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
335 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
336 An MLP is a family of functions that are described by stacking layers of of a function similar to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
337 $$g(x) = \tanh(b+Wx)$$ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
338 The input, $x$, is a $d$-dimension vector. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
339 The output, $g(x)$, is a $m$-dimension vector. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
340 The parameter $W$ is a $m\times d$ matrix and is called the weight matrix. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
341 The parameter $b$ is a $m$-vector and is called the bias vector. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
342 The non-linearity (here $\tanh$) is applied element-wise to the output vector. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
343 Usually the input is referred to a input layer and similarly for the output. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
344 You can of course chain several such functions to obtain a more complex one. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
345 Here is a common example |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
346 $$f(x) = c + V\tanh(b+Wx)$$ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
347 In this case the intermediate layer corresponding to $\tanh(b+Wx)$ is called a hidden layer. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
348 Here the output layer does not have the same non-linearity as the hidden layer. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
349 This is a common case where some specialized non-linearity is applied to the output layer only depending on the task at hand. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
350 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
351 If you put 3 or more hidden layers in such a network you obtain what is called a deep MLP. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
352 The parameters to adapt are the weight matrix and the bias vector for each layer. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
353 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
354 \subsubsection{Stacked Denoising Auto-Encoders (SDAE)} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
355 \label{SdA} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
356 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
357 Auto-encoders are essentially a way to initialize the weights of the network to enable better generalization. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
358 This is essentially unsupervised training where the layer is made to reconstruct its input through and encoding and decoding phase. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
359 Denoising auto-encoders are a variant where the input is corrupted with random noise but the target is the uncorrupted input. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
360 The principle behind these initialization methods is that the network will learn the inherent relation between portions of the data and be able to represent them thus helping with whatever task we want to perform. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
361 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
362 An auto-encoder unit is formed of two MLP layers with the bottom one called the encoding layer and the top one the decoding layer. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
363 Usually the top and bottom weight matrices are the transpose of each other and are fixed this way. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
364 The network is trained as such and, when sufficiently trained, the MLP layer is initialized with the parameters of the encoding layer. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
365 The other parameters are discarded. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
366 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
367 The stacked version is an adaptation to deep MLPs where you initialize each layer with a denoising auto-encoder starting from the bottom. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
368 During the initialization, which is usually called pre-training, the bottom layer is treated as if it were an isolated auto-encoder. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
369 The second and following layers receive the same treatment except that they take as input the encoded version of the data that has gone through the layers before it. |
469 | 370 For additional details see \citet{vincent:icml08}. |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
371 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
372 \section{Experimental Results} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
373 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
374 \subsection{SDA vs MLP vs Humans} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
375 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
376 We compare here the best MLP (according to validation set error) that we found against |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
377 the best SDA (again according to validation set error), along with a precise estimate |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
378 of human performance obtained via Amazon's Mechanical Turk (AMT) |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
379 service\footnote{http://mturk.com}. AMT users are paid small amounts |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
380 of money to perform tasks for which human intelligence is required. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
381 Mechanical Turk has been used extensively in natural language |
469 | 382 processing \citep{SnowEtAl2008} and vision |
383 \citep{SorokinAndForsyth2008,whitehill09}. AMT users where presented | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
384 with 10 character images and asked to type 10 corresponding ascii |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
385 characters. Hence they were forced to make a hard choice among the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
386 62 character classes. Three users classified each image, allowing |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
387 to estimate inter-human variability (shown as +/- in parenthesis below). |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
388 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
389 \begin{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
390 \caption{Overall comparison of error rates ($\pm$ std.err.) on 62 character classes (10 digits + |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
391 26 lower + 26 upper), except for last columns -- digits only, between deep architecture with pre-training |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
392 (SDA=Stacked Denoising Autoencoder) and ordinary shallow architecture |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
393 (MLP=Multi-Layer Perceptron). The models shown are all trained using perturbed data (NISTP or P07) |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
394 and using a validation set to select hyper-parameters and other training choices. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
395 \{SDA,MLP\}0 are trained on NIST, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
396 \{SDA,MLP\}1 are trained on NISTP, and \{SDA,MLP\}2 are trained on P07. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
397 The human error rate on digits is a lower bound because it does not count digits that were |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
398 recognized as letters. For comparison, the results found in the literature |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
399 on NIST digits classification using the same test set are included.} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
400 \label{tab:sda-vs-mlp-vs-humans} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
401 \begin{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
402 \begin{tabular}{|l|r|r|r|r|} \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
403 & NIST test & NISTP test & P07 test & NIST test digits \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
404 Humans& 18.2\% $\pm$.1\% & 39.4\%$\pm$.1\% & 46.9\%$\pm$.1\% & $>1.1\%$ \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
405 SDA0 & 23.7\% $\pm$.14\% & 65.2\%$\pm$.34\% & 97.45\%$\pm$.06\% & 2.7\% $\pm$.14\%\\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
406 SDA1 & 17.1\% $\pm$.13\% & 29.7\%$\pm$.3\% & 29.7\%$\pm$.3\% & 1.4\% $\pm$.1\%\\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
407 SDA2 & 18.7\% $\pm$.13\% & 33.6\%$\pm$.3\% & 39.9\%$\pm$.17\% & 1.7\% $\pm$.1\%\\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
408 MLP0 & 24.2\% $\pm$.15\% & 68.8\%$\pm$.33\% & 78.70\%$\pm$.14\% & 3.45\% $\pm$.15\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
409 MLP1 & 23.0\% $\pm$.15\% & 41.8\%$\pm$.35\% & 90.4\%$\pm$.1\% & 3.85\% $\pm$.16\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
410 MLP2 & 24.3\% $\pm$.15\% & 46.0\%$\pm$.35\% & 54.7\%$\pm$.17\% & 4.85\% $\pm$.18\% \\ \hline |
469 | 411 \citep{Granger+al-2007} & & & & 4.95\% $\pm$.18\% \\ \hline |
412 \citep{Cortes+al-2000} & & & & 3.71\% $\pm$.16\% \\ \hline | |
413 \citep{Oliveira+al-2002} & & & & 2.4\% $\pm$.13\% \\ \hline | |
414 \citep{Migram+al-2005} & & & & 2.1\% $\pm$.12\% \\ \hline | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
415 \end{tabular} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
416 \end{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
417 \end{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
418 |
475 | 419 \begin{figure}[h] |
420 \resizebox{.99\textwidth}{!}{\includegraphics{images/error_rates_charts.pdf}}\\ | |
421 \caption{Charts corresponding to table \ref{tab:sda-vs-mlp-vs-humans}. Left: overall results; error bars indicate a 95\% confidence interval. Right: error rates on NIST test digits only, with results from litterature. } | |
422 \label{fig:error-rates-charts} | |
423 \end{figure} | |
424 | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
425 \subsection{Perturbed Training Data More Helpful for SDAE} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
426 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
427 \begin{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
428 \caption{Relative change in error rates due to the use of perturbed training data, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
429 either using NISTP, for the MLP1/SDA1 models, or using P07, for the MLP2/SDA2 models. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
430 A positive value indicates that training on the perturbed data helped for the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
431 given test set (the first 3 columns on the 62-class tasks and the last one is |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
432 on the clean 10-class digits). Clearly, the deep learning models did benefit more |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
433 from perturbed training data, even when testing on clean data, whereas the MLP |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
434 trained on perturbed data performed worse on the clean digits and about the same |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
435 on the clean characters. } |
469 | 436 \label{tab:perturbation-effect} |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
437 \begin{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
438 \begin{tabular}{|l|r|r|r|r|} \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
439 & NIST test & NISTP test & P07 test & NIST test digits \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
440 SDA0/SDA1-1 & 38\% & 84\% & 228\% & 93\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
441 SDA0/SDA2-1 & 27\% & 94\% & 144\% & 59\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
442 MLP0/MLP1-1 & 5.2\% & 65\% & -13\% & -10\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
443 MLP0/MLP2-1 & -0.4\% & 49\% & 44\% & -29\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
444 \end{tabular} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
445 \end{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
446 \end{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
447 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
448 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
449 \subsection{Multi-Task Learning Effects} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
450 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
451 As previously seen, the SDA is better able to benefit from the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
452 transformations applied to the data than the MLP. In this experiment we |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
453 define three tasks: recognizing digits (knowing that the input is a digit), |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
454 recognizing upper case characters (knowing that the input is one), and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
455 recognizing lower case characters (knowing that the input is one). We |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
456 consider the digit classification task as the target task and we want to |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
457 evaluate whether training with the other tasks can help or hurt, and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
458 whether the effect is different for MLPs versus SDAs. The goal is to find |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
459 out if deep learning can benefit more (or less) from multiple related tasks |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
460 (i.e. the multi-task setting) compared to a corresponding purely supervised |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
461 shallow learner. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
462 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
463 We use a single hidden layer MLP with 1000 hidden units, and a SDA |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
464 with 3 hidden layers (1000 hidden units per layer), pre-trained and |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
465 fine-tuned on NIST. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
466 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
467 Our results show that the MLP benefits marginally from the multi-task setting |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
468 in the case of digits (5\% relative improvement) but is actually hurt in the case |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
469 of characters (respectively 3\% and 4\% worse for lower and upper class characters). |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
470 On the other hand the SDA benefitted from the multi-task setting, with relative |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
471 error rate improvements of 27\%, 15\% and 13\% respectively for digits, |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
472 lower and upper case characters, as shown in Table~\ref{tab:multi-task}. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
473 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
474 \begin{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
475 \caption{Test error rates and relative change in error rates due to the use of |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
476 a multi-task setting, i.e., training on each task in isolation vs training |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
477 for all three tasks together, for MLPs vs SDAs. The SDA benefits much |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
478 more from the multi-task setting. All experiments on only on the |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
479 unperturbed NIST data, using validation error for model selection. |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
480 Relative improvement is 1 - single-task error / multi-task error.} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
481 \label{tab:multi-task} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
482 \begin{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
483 \begin{tabular}{|l|r|r|r|} \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
484 & single-task & multi-task & relative \\ |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
485 & setting & setting & improvement \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
486 MLP-digits & 3.77\% & 3.99\% & 5.6\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
487 MLP-lower & 17.4\% & 16.8\% & -4.1\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
488 MLP-upper & 7.84\% & 7.54\% & -3.6\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
489 SDA-digits & 2.6\% & 3.56\% & 27\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
490 SDA-lower & 12.3\% & 14.4\% & 15\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
491 SDA-upper & 5.93\% & 6.78\% & 13\% \\ \hline |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
492 \end{tabular} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
493 \end{center} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
494 \end{table} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
495 |
475 | 496 |
497 \begin{figure}[h] | |
498 \resizebox{.99\textwidth}{!}{\includegraphics{images/improvements_charts.pdf}}\\ | |
499 \caption{Charts corresponding to tables \ref{tab:perturbation-effect} (left) and \ref{tab:multi-task} (right).} | |
500 \label{fig:improvements-charts} | |
501 \end{figure} | |
502 | |
503 | |
504 | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
505 \section{Conclusions} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
506 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
507 \bibliography{strings,ml,aigaion,specials} |
469 | 508 %\bibliographystyle{plainnat} |
509 \bibliographystyle{unsrtnat} | |
464
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
510 %\bibliographystyle{apalike} |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
511 |
24f4a8b53fcc
nips2010_submission.tex
Yoshua Bengio <bengioy@iro.umontreal.ca>
parents:
diff
changeset
|
512 \end{document} |