Mercurial > fife-parpg
view engine/core/util/structures/point.h @ 645:291ba2946c73
* Added the ability to normalize a 2D and 3D point.
* You can now rotate a 2D point around the origin or a specific point.
* Modified the shooter demo to use the new point functionality.
* Removed the fife_math extension.
author | prock@33b003aa-7bff-0310-803a-e67f0ece8222 |
---|---|
date | Tue, 12 Oct 2010 18:58:47 +0000 |
parents | 90005975cdbb |
children | 07b1cf8e92b5 |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ #ifndef FIFE_VIDEO_POINT_H #define FIFE_VIDEO_POINT_H // Standard C++ library includes #include <iostream> #include <cassert> // Platform specific includes // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/base/fife_stdint.h" #include "util/math/fife_math.h" namespace FIFE { /** A 2D Point * * This is a small helper class to aid in 2d vector arithmetics. * @see Rect */ template <typename T> class PointType2D { public: union { T val[2]; struct { T x,y; }; }; /** Constructor * * Creates a with 0 as default values. */ explicit PointType2D(T _x = 0, T _y = 0): x(_x), y(_y) { } /** Copy Constructor */ PointType2D(const PointType2D<T>& rhs): x(rhs.x), y(rhs.y) { } /** Vector addition */ PointType2D<T> operator+(const PointType2D<T>& p) const { return PointType2D<T>(x + p.x, y + p.y); } /** Vector substraction */ PointType2D<T> operator-(const PointType2D<T>& p) const { return PointType2D<T>(x - p.x, y - p.y); } /** Vector inplace addition */ PointType2D<T>& operator+=(const PointType2D<T>& p) { x += p.x; y += p.y; return *this; } /** Vector inplace substraction */ PointType2D<T>& operator-=(const PointType2D<T>& p) { x -= p.x; y -= p.y; return *this; } /** Scalar multiplication with an integer value */ PointType2D<T> operator*(const T& i) const { return PointType2D<T>(x * i, y * i); } /** Scalar division with an integer value */ PointType2D<T> operator/(const T& i) const { return PointType2D<T>(x / i, y / i); } /** Equality comparision */ bool operator==(const PointType2D<T>& p) const { return x == p.x && y == p.y; } /** Equality comparision */ bool operator!=(const PointType2D<T>& p) const { return !(x == p.x && y == p.y); } /** Return length */ T length() const { double sq; sq = x*x + y*y; return static_cast<T>(sqrt(sq)); } /** Normalizes the point */ void normalize() { T invLength = 1.0/length(); //TODO: get rid of this static cast if (invLength > static_cast<T>(DBL_ZERO_TOLERANCE)) { x = x * invLength; y = y * invLength; } else { x = 0; y = 0; } } /** Rotates the point around the origin */ void rotate(T angle){ //TODO: get rid of this static cast T theta = (angle * static_cast<T>(DBL_PI))/180; T costheta = cos(theta); T sintheta = sin(theta); T nx = x; T ny = y; x = costheta * nx - sintheta * ny; y = sintheta * nx + costheta * ny; } /** Rotates the point around an origin */ void rotate(const PointType2D<T>& origin, T angle){ //TODO: get rid of this static cast T theta = (angle * static_cast<T>(DBL_PI))/180; T costheta = cos(theta); T sintheta = sin(theta); T nx = x - origin.x; T ny = y - origin.y; x = costheta * nx - sintheta * ny; y = sintheta * nx + costheta * ny; } inline T& operator[] (int ind) { assert(ind > -1 && ind < 2); return val[ind]; } }; /** Print coords of the Point to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const PointType2D<T>& p) { return os << "(" << p.x << ":" << p.y << ")"; } typedef PointType2D<int> Point; typedef PointType2D<double> DoublePoint; /** A 3D Point * * This is a small helper class to aid in 3d vector arithmetics. * @see Rect */ template <typename T> class PointType3D { public: union { T val[3]; struct { T x,y,z; }; }; /** Constructor * * Creates a with 0 as default values. */ explicit PointType3D(T _x = 0, T _y = 0, T _z = 0): x(_x), y(_y), z(_z) { } /** Copy Constructor */ PointType3D(const PointType3D<T>& rhs): x(rhs.x), y(rhs.y), z(rhs.z) { } /** Vector addition */ PointType3D<T> operator+(const PointType3D<T>& p) const { return PointType3D<T>(x + p.x, y + p.y, z + p.z); } /** Vector substraction */ PointType3D<T> operator-(const PointType3D<T>& p) const { return PointType3D<T>(x - p.x, y - p.y, z - p.z); } /** Vector inplace addition */ PointType3D<T>& operator+=(const PointType3D<T>& p) { x += p.x; y += p.y; z += p.z; return *this; } /** Vector inplace substraction */ PointType3D<T>& operator-=(const PointType3D<T>& p) { x -= p.x; y -= p.y; z -= p.z; return *this; } /** Scalar multiplication with an integer value */ PointType3D<T> operator*(const T& i) const { return PointType3D<T>(x * i, y * i, z * i); } /** Scalar division with an integer value */ PointType3D<T> operator/(const T& i) const { return PointType3D<T>(x / i, y / i, z / i); } /** Equality comparision */ bool operator==(const PointType3D<T>& p) const { return x == p.x && y == p.y && z == p.z; } /** Equality comparision */ bool operator!=(const PointType3D<T>& p) const { return !(x == p.x && y == p.y && z == p.z); } /** Return length */ T length() const { double sq; sq = x*x + y*y + z*z; return static_cast<T>(sqrt(sq)); } /** Normalizes the point */ void normalize() { T invLength = 1.0/length(); //TODO: get rid of this static cast if (invLength > static_cast<T>(DBL_ZERO_TOLERANCE)) { x = x * invLength; y = y * invLength; z = z * invLength; } else { x = 0; y = 0; z = 0; } } inline T& operator[] (int ind) { assert(ind > -1 && ind < 3); return val[ind]; } }; /** Print coords of the Point to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const PointType3D<T>& p) { return os << "(" << p.x << ":" << p.y << ":" << p.z << ")"; } typedef PointType3D<int> Point3D; typedef PointType3D<double> DoublePoint3D; /** Convert from 2D double point to 2D int point */ inline Point doublePt2intPt(DoublePoint pt) { Point tmp(static_cast<int>(round(pt.x)), static_cast<int>(round(pt.y))); return tmp; } /** Convert from 3D double point to 3D int point */ inline Point3D doublePt2intPt(DoublePoint3D pt) { Point3D tmp(static_cast<int>(round(pt.x)), static_cast<int>(round(pt.y)), static_cast<int>(round(pt.z))); return tmp; } /** Convert from 2D int point to 2D double point */ inline DoublePoint intPt2doublePt(Point pt) { DoublePoint tmp(static_cast<double>(pt.x), static_cast<double>(pt.y)); return tmp; } /** Convert from 3D int point to 3D double point */ inline DoublePoint3D intPt2doublePt(Point3D pt) { DoublePoint3D tmp(static_cast<double>(pt.x), static_cast<double>(pt.y), static_cast<double>(pt.z)); return tmp; } } #endif