Mercurial > fife-parpg
view engine/core/util/structures/point.h @ 697:ecaa4d98f05f tip
Abstracted the GUI code and refactored the GUIChan-specific code into its own module.
* Most of the GUIChan code has been refactored into its own gui/guichan module. However, references to the GuiFont class still persist in the Engine and GuiManager code and these will need further refactoring.
* GuiManager is now an abstract base class which specific implementations (e.g. GUIChan) should subclass.
* The GUIChan GUI code is now a concrete implementation of GuiManager, most of which is in the new GuiChanGuiManager class.
* The GUI code in the Console class has been refactored out of the Console and into the GUIChan module as its own GuiChanConsoleWidget class. The rest of the Console class related to executing commands was left largely unchanged.
* Existing client code may need to downcast the GuiManager pointer received from FIFE::Engine::getGuiManager() to GuiChanGuiManager, since not all functionality is represented in the GuiManager abstract base class. Python client code can use the new GuiChanGuiManager.castTo static method for this purpose.
author | M. George Hansen <technopolitica@gmail.com> |
---|---|
date | Sat, 18 Jun 2011 00:28:40 -1000 |
parents | bb26a76458c6 |
children |
line wrap: on
line source
/*************************************************************************** * Copyright (C) 2005-2008 by the FIFE team * * http://www.fifengine.de * * This file is part of FIFE. * * * * FIFE is free software; you can redistribute it and/or * * modify it under the terms of the GNU Lesser General Public * * License as published by the Free Software Foundation; either * * version 2.1 of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * Lesser General Public License for more details. * * * * You should have received a copy of the GNU Lesser General Public * * License along with this library; if not, write to the * * Free Software Foundation, Inc., * * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * ***************************************************************************/ #ifndef FIFE_VIDEO_POINT_H #define FIFE_VIDEO_POINT_H // Standard C++ library includes #include <iostream> #include <cassert> // Platform specific includes // 3rd party library includes // FIFE includes // These includes are split up in two parts, separated by one empty line // First block: files included from the FIFE root src directory // Second block: files included from the same folder #include "util/base/fife_stdint.h" #include "util/math/fife_math.h" namespace FIFE { /** A 2D Point * * This is a small helper class to aid in 2d vector arithmetics. * @see Rect */ template <typename T> class PointType2D { public: union { T val[2]; struct { T x,y; }; }; /** Constructor * * Creates a with 0 as default values. */ explicit PointType2D(T _x = 0, T _y = 0): x(_x), y(_y) { } /** Copy Constructor */ PointType2D(const PointType2D<T>& rhs): x(rhs.x), y(rhs.y) { } /** Vector addition */ PointType2D<T> operator+(const PointType2D<T>& p) const { return PointType2D<T>(x + p.x, y + p.y); } /** Vector substraction */ PointType2D<T> operator-(const PointType2D<T>& p) const { return PointType2D<T>(x - p.x, y - p.y); } /** Vector inplace addition */ PointType2D<T>& operator+=(const PointType2D<T>& p) { x += p.x; y += p.y; return *this; } /** Vector inplace substraction */ PointType2D<T>& operator-=(const PointType2D<T>& p) { x -= p.x; y -= p.y; return *this; } /** Scalar multiplication with an integer value */ PointType2D<T> operator*(const T& i) const { return PointType2D<T>(x * i, y * i); } /** Scalar division with an integer value */ PointType2D<T> operator/(const T& i) const { return PointType2D<T>(x / i, y / i); } /** Equality comparision */ bool operator==(const PointType2D<T>& p) const { return x == p.x && y == p.y; } /** Equality comparision */ bool operator!=(const PointType2D<T>& p) const { return !(x == p.x && y == p.y); } /** Return length */ T length() const { double sq; sq = x*x + y*y; return static_cast<T>(Mathd::Sqrt(sq)); } /** Normalizes the point */ void normalize() { T invLength = 1.0/length(); //TODO: get rid of this static cast if (invLength > static_cast<T>(Mathd::zeroTolerance())) { x = x * invLength; y = y * invLength; } else { x = 0; y = 0; } } /** Rotates the point around the origin */ void rotate(T angle){ //TODO: get rid of this static cast T theta = (angle * static_cast<T>(Mathd::pi()))/180; T costheta = static_cast<T>(Mathd::Cos(theta)); T sintheta = static_cast<T>(Mathd::Sin(theta)); T nx = x; T ny = y; x = costheta * nx - sintheta * ny; y = sintheta * nx + costheta * ny; } /** Rotates the point around an origin */ void rotate(const PointType2D<T>& origin, T angle){ //TODO: get rid of this static cast T theta = (angle * static_cast<T>(Mathd::pi()))/180; T costheta = static_cast<T>(Mathd::Cos(theta)); T sintheta = static_cast<T>(Mathd::Sin(theta)); T nx = x - origin.x; T ny = y - origin.y; x = costheta * nx - sintheta * ny; y = sintheta * nx + costheta * ny; } inline T& operator[] (int ind) { assert(ind > -1 && ind < 2); return val[ind]; } }; /** Print coords of the Point to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const PointType2D<T>& p) { return os << "(" << p.x << ":" << p.y << ")"; } typedef PointType2D<int> Point; typedef PointType2D<double> DoublePoint; /** A 3D Point * * This is a small helper class to aid in 3d vector arithmetics. * @see Rect */ template <typename T> class PointType3D { public: union { T val[3]; struct { T x,y,z; }; }; /** Constructor * * Creates a with 0 as default values. */ explicit PointType3D(T _x = 0, T _y = 0, T _z = 0): x(_x), y(_y), z(_z) { } /** Copy Constructor */ PointType3D(const PointType3D<T>& rhs): x(rhs.x), y(rhs.y), z(rhs.z) { } /** Vector addition */ PointType3D<T> operator+(const PointType3D<T>& p) const { return PointType3D<T>(x + p.x, y + p.y, z + p.z); } /** Vector substraction */ PointType3D<T> operator-(const PointType3D<T>& p) const { return PointType3D<T>(x - p.x, y - p.y, z - p.z); } /** Vector inplace addition */ PointType3D<T>& operator+=(const PointType3D<T>& p) { x += p.x; y += p.y; z += p.z; return *this; } /** Vector inplace substraction */ PointType3D<T>& operator-=(const PointType3D<T>& p) { x -= p.x; y -= p.y; z -= p.z; return *this; } /** Scalar multiplication with an integer value */ PointType3D<T> operator*(const T& i) const { return PointType3D<T>(x * i, y * i, z * i); } /** Scalar division with an integer value */ PointType3D<T> operator/(const T& i) const { return PointType3D<T>(x / i, y / i, z / i); } /** Equality comparision */ bool operator==(const PointType3D<T>& p) const { return x == p.x && y == p.y && z == p.z; } /** Equality comparision */ bool operator!=(const PointType3D<T>& p) const { return !(x == p.x && y == p.y && z == p.z); } /** Return length */ T length() const { double sq; sq = x*x + y*y + z*z; return static_cast<T>(sqrt(sq)); } /** Normalizes the point */ void normalize() { T invLength = 1.0/length(); //TODO: get rid of this static cast if (invLength > static_cast<T>(Mathd::zeroTolerance())) { x = x * invLength; y = y * invLength; z = z * invLength; } else { x = 0; y = 0; z = 0; } } inline T& operator[] (int ind) { assert(ind > -1 && ind < 3); return val[ind]; } }; /** Print coords of the Point to a stream */ template<typename T> std::ostream& operator<<(std::ostream& os, const PointType3D<T>& p) { return os << "(" << p.x << ":" << p.y << ":" << p.z << ")"; } typedef PointType3D<int> Point3D; typedef PointType3D<double> DoublePoint3D; /** Convert from 2D double point to 2D int point */ inline Point doublePt2intPt(DoublePoint pt) { Point tmp(static_cast<int>(round(pt.x)), static_cast<int>(round(pt.y))); return tmp; } /** Convert from 3D double point to 3D int point */ inline Point3D doublePt2intPt(DoublePoint3D pt) { Point3D tmp(static_cast<int>(round(pt.x)), static_cast<int>(round(pt.y)), static_cast<int>(round(pt.z))); return tmp; } /** Convert from 2D int point to 2D double point */ inline DoublePoint intPt2doublePt(Point pt) { DoublePoint tmp(static_cast<double>(pt.x), static_cast<double>(pt.y)); return tmp; } /** Convert from 3D int point to 3D double point */ inline DoublePoint3D intPt2doublePt(Point3D pt) { DoublePoint3D tmp(static_cast<double>(pt.x), static_cast<double>(pt.y), static_cast<double>(pt.z)); return tmp; } } #endif