Mercurial > traipse_dev
view plugins/cherrypy/_cpthreadinglocal.py @ 193:6debef714365 beta
Traipse Beta 'OpenRPG' {100201-02}
Traipse is a distribution of OpenRPG that is designed to be easy to setup and go.
Traipse also makes it easy for developers to work on code without fear of sacrifice.
'Ornery-Orc' continues the trend of 'Grumpy' and adds fixes to the code.
'Ornery-Orc's main goal is to offer more advanced features and enhance the
productivity of the user.
Update Summary (Beta)
New Features:
New Bookmarks Feature
New 'boot' command to remote admin
New confirmation window for sent nodes
Miniatures Layer pop up box allows users to turn off Mini labels, from FlexiRPG
New Zoom Mouse plugin added
New Images added to Plugin UI
Switching to Element Tree
New Map efficiency, from FlexiRPG
New Status Bar to Update Manager
New TrueDebug Class in orpg_log (See documentation for usage)
New Portable Mercurial
New Tip of the Day, from Core and community
New Reference Syntax added for custom PC sheets
New Child Reference for gametree
New Parent Reference for gametree
New Gametree Recursion method, mapping, context sensitivity, and effeciency..
New Features node with bonus nodes and Node Referencing help added
New Dieroller structure from Core
New DieRoller portability for odd Dice
New 7th Sea die roller; ie [7k3] = [7d10.takeHighest(3).open(10)]
New 'Mythos' System die roller added
New vs. die roller method for WoD; ie [3v3] = [3d10.vs(3)]. Included for Mythos
roller also
New Warhammer FRPG Die Roller (Special thanks to Puu-san for the support)
New EZ_Tree Reference system. Push a button, Traipse the tree, get a reference
(Beta!)
New Grids act more like Spreadsheets in Use mode, with Auto Calc
Fixes:
Fix to allow for portability to an OpenSUSE linux OS
Fix to mplay_client for Fedora and OpenSUSE
Fix to Text based Server
Fix to Remote Admin Commands
Fix to Pretty Print, from Core
Fix to Splitter Nodes not being created
Fix to massive amounts of images loading, from Core
Fix to Map from gametree not showing to all clients
Fix to gametree about menus
Fix to Password Manager check on startup
Fix to PC Sheets from tool nodes. They now use the tabber_panel
Fix to Whiteboard ID to prevent random line or text deleting.
Fixes to Server, Remote Server, and Server GUI
Fix to Update Manager; cleaner clode for saved repositories
Fixes made to Settings Panel and now reactive settings when Ok is pressed
Fixes to Alternity roller's attack roll. Uses a simple Tuple instead of a Splice
Fix to Use panel of Forms and Tabbers. Now longer enters design mode
Fix made Image Fetching. New fetching image and new failed image
Fix to whiteboard ID's to prevent non updated clients from ruining the fix.
default_manifest.xml renamed to default_upmana.xml
author | sirebral |
---|---|
date | Mon, 01 Feb 2010 14:22:20 -0600 |
parents | 4385a7d0efd1 |
children |
line wrap: on
line source
# This is a backport of Python-2.4's threading.local() implementation """Thread-local objects (Note that this module provides a Python version of thread threading.local class. Depending on the version of Python you're using, there may be a faster one available. You should always import the local class from threading.) Thread-local objects support the management of thread-local data. If you have data that you want to be local to a thread, simply create a thread-local object and use its attributes: >>> mydata = local() >>> mydata.number = 42 >>> mydata.number 42 You can also access the local-object's dictionary: >>> mydata.__dict__ {'number': 42} >>> mydata.__dict__.setdefault('widgets', []) [] >>> mydata.widgets [] What's important about thread-local objects is that their data are local to a thread. If we access the data in a different thread: >>> log = [] >>> def f(): ... items = mydata.__dict__.items() ... items.sort() ... log.append(items) ... mydata.number = 11 ... log.append(mydata.number) >>> import threading >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() >>> log [[], 11] we get different data. Furthermore, changes made in the other thread don't affect data seen in this thread: >>> mydata.number 42 Of course, values you get from a local object, including a __dict__ attribute, are for whatever thread was current at the time the attribute was read. For that reason, you generally don't want to save these values across threads, as they apply only to the thread they came from. You can create custom local objects by subclassing the local class: >>> class MyLocal(local): ... number = 2 ... initialized = False ... def __init__(self, **kw): ... if self.initialized: ... raise SystemError('__init__ called too many times') ... self.initialized = True ... self.__dict__.update(kw) ... def squared(self): ... return self.number ** 2 This can be useful to support default values, methods and initialization. Note that if you define an __init__ method, it will be called each time the local object is used in a separate thread. This is necessary to initialize each thread's dictionary. Now if we create a local object: >>> mydata = MyLocal(color='red') Now we have a default number: >>> mydata.number 2 an initial color: >>> mydata.color 'red' >>> del mydata.color And a method that operates on the data: >>> mydata.squared() 4 As before, we can access the data in a separate thread: >>> log = [] >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() >>> log [[('color', 'red'), ('initialized', True)], 11] without affecting this thread's data: >>> mydata.number 2 >>> mydata.color Traceback (most recent call last): ... AttributeError: 'MyLocal' object has no attribute 'color' Note that subclasses can define slots, but they are not thread local. They are shared across threads: >>> class MyLocal(local): ... __slots__ = 'number' >>> mydata = MyLocal() >>> mydata.number = 42 >>> mydata.color = 'red' So, the separate thread: >>> thread = threading.Thread(target=f) >>> thread.start() >>> thread.join() affects what we see: >>> mydata.number 11 >>> del mydata """ # Threading import is at end class _localbase(object): __slots__ = '_local__key', '_local__args', '_local__lock' def __new__(cls, *args, **kw): self = object.__new__(cls) key = '_local__key', 'thread.local.' + str(id(self)) object.__setattr__(self, '_local__key', key) object.__setattr__(self, '_local__args', (args, kw)) object.__setattr__(self, '_local__lock', RLock()) if args or kw and (cls.__init__ is object.__init__): raise TypeError("Initialization arguments are not supported") # We need to create the thread dict in anticipation of # __init__ being called, to make sire we don't cal it # again ourselves. dict = object.__getattribute__(self, '__dict__') currentThread().__dict__[key] = dict return self def _patch(self): key = object.__getattribute__(self, '_local__key') d = currentThread().__dict__.get(key) if d is None: d = {} currentThread().__dict__[key] = d object.__setattr__(self, '__dict__', d) # we have a new instance dict, so call out __init__ if we have # one cls = type(self) if cls.__init__ is not object.__init__: args, kw = object.__getattribute__(self, '_local__args') cls.__init__(self, *args, **kw) else: object.__setattr__(self, '__dict__', d) class local(_localbase): def __getattribute__(self, name): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__getattribute__(self, name) finally: lock.release() def __setattr__(self, name, value): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__setattr__(self, name, value) finally: lock.release() def __delattr__(self, name): lock = object.__getattribute__(self, '_local__lock') lock.acquire() try: _patch(self) return object.__delattr__(self, name) finally: lock.release() def __del__(): threading_enumerate = enumerate __getattribute__ = object.__getattribute__ def __del__(self): key = __getattribute__(self, '_local__key') try: threads = list(threading_enumerate()) except: # if enumerate fails, as it seems to do during # shutdown, we'll skip cleanup under the assumption # that there is nothing to clean up return for thread in threads: try: __dict__ = thread.__dict__ except AttributeError: # Thread is dying, rest in peace continue if key in __dict__: try: del __dict__[key] except KeyError: pass # didn't have anything in this thread return __del__ __del__ = __del__() from threading import currentThread, enumerate, RLock