Mercurial > sdl-ios-xcode
changeset 2757:0581f49c9294
Whoops, missed a file...
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 15 Sep 2008 06:46:23 +0000 |
parents | a98604b691c8 |
children | 045d9976f285 |
files | src/libm/k_rem_pio2.c |
diffstat | 1 files changed, 358 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/libm/k_rem_pio2.c Mon Sep 15 06:46:23 2008 +0000 @@ -0,0 +1,358 @@ +/* @(#)k_rem_pio2.c 5.1 93/09/24 */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +#if defined(LIBM_SCCS) && !defined(lint) +static char rcsid[] = + "$NetBSD: k_rem_pio2.c,v 1.7 1995/05/10 20:46:25 jtc Exp $"; +#endif + +/* + * __kernel_rem_pio2(x,y,e0,nx,prec,ipio2) + * double x[],y[]; int e0,nx,prec; int ipio2[]; + * + * __kernel_rem_pio2 return the last three digits of N with + * y = x - N*pi/2 + * so that |y| < pi/2. + * + * The method is to compute the integer (mod 8) and fraction parts of + * (2/pi)*x without doing the full multiplication. In general we + * skip the part of the product that are known to be a huge integer ( + * more accurately, = 0 mod 8 ). Thus the number of operations are + * independent of the exponent of the input. + * + * (2/pi) is represented by an array of 24-bit integers in ipio2[]. + * + * Input parameters: + * x[] The input value (must be positive) is broken into nx + * pieces of 24-bit integers in double precision format. + * x[i] will be the i-th 24 bit of x. The scaled exponent + * of x[0] is given in input parameter e0 (i.e., x[0]*2^e0 + * match x's up to 24 bits. + * + * Example of breaking a double positive z into x[0]+x[1]+x[2]: + * e0 = ilogb(z)-23 + * z = scalbn(z,-e0) + * for i = 0,1,2 + * x[i] = floor(z) + * z = (z-x[i])*2**24 + * + * + * y[] ouput result in an array of double precision numbers. + * The dimension of y[] is: + * 24-bit precision 1 + * 53-bit precision 2 + * 64-bit precision 2 + * 113-bit precision 3 + * The actual value is the sum of them. Thus for 113-bit + * precison, one may have to do something like: + * + * long double t,w,r_head, r_tail; + * t = (long double)y[2] + (long double)y[1]; + * w = (long double)y[0]; + * r_head = t+w; + * r_tail = w - (r_head - t); + * + * e0 The exponent of x[0] + * + * nx dimension of x[] + * + * prec an integer indicating the precision: + * 0 24 bits (single) + * 1 53 bits (double) + * 2 64 bits (extended) + * 3 113 bits (quad) + * + * ipio2[] + * integer array, contains the (24*i)-th to (24*i+23)-th + * bit of 2/pi after binary point. The corresponding + * floating value is + * + * ipio2[i] * 2^(-24(i+1)). + * + * External function: + * double scalbn(), floor(); + * + * + * Here is the description of some local variables: + * + * jk jk+1 is the initial number of terms of ipio2[] needed + * in the computation. The recommended value is 2,3,4, + * 6 for single, double, extended,and quad. + * + * jz local integer variable indicating the number of + * terms of ipio2[] used. + * + * jx nx - 1 + * + * jv index for pointing to the suitable ipio2[] for the + * computation. In general, we want + * ( 2^e0*x[0] * ipio2[jv-1]*2^(-24jv) )/8 + * is an integer. Thus + * e0-3-24*jv >= 0 or (e0-3)/24 >= jv + * Hence jv = max(0,(e0-3)/24). + * + * jp jp+1 is the number of terms in PIo2[] needed, jp = jk. + * + * q[] double array with integral value, representing the + * 24-bits chunk of the product of x and 2/pi. + * + * q0 the corresponding exponent of q[0]. Note that the + * exponent for q[i] would be q0-24*i. + * + * PIo2[] double precision array, obtained by cutting pi/2 + * into 24 bits chunks. + * + * f[] ipio2[] in floating point + * + * iq[] integer array by breaking up q[] in 24-bits chunk. + * + * fq[] final product of x*(2/pi) in fq[0],..,fq[jk] + * + * ih integer. If >0 it indicates q[] is >= 0.5, hence + * it also indicates the *sign* of the result. + * + */ + + +/* + * Constants: + * The hexadecimal values are the intended ones for the following + * constants. The decimal values may be used, provided that the + * compiler will convert from decimal to binary accurately enough + * to produce the hexadecimal values shown. + */ + +#include "math.h" +#include "math_private.h" + +libm_hidden_proto(scalbn) + libm_hidden_proto(floor) +#ifdef __STDC__ + static const int init_jk[] = { 2, 3, 4, 6 }; /* initial value for jk */ +#else + static int init_jk[] = { 2, 3, 4, 6 }; +#endif + +#ifdef __STDC__ +static const double PIo2[] = { +#else +static double PIo2[] = { +#endif + 1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */ + 7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */ + 5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */ + 3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */ + 1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */ + 1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */ + 2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */ + 2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */ +}; + +#ifdef __STDC__ +static const double +#else +static double +#endif + zero = 0.0, one = 1.0, two24 = 1.67772160000000000000e+07, /* 0x41700000, 0x00000000 */ + twon24 = 5.96046447753906250000e-08; /* 0x3E700000, 0x00000000 */ + +#ifdef __STDC__ +int attribute_hidden +__kernel_rem_pio2(double *x, double *y, int e0, int nx, int prec, + const int32_t * ipio2) +#else +int attribute_hidden +__kernel_rem_pio2(x, y, e0, nx, prec, ipio2) + double x[], y[]; + int e0, nx, prec; + int32_t ipio2[]; +#endif +{ + int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih; + double z, fw, f[20], fq[20], q[20]; + + /* initialize jk */ + jk = init_jk[prec]; + jp = jk; + + /* determine jx,jv,q0, note that 3>q0 */ + jx = nx - 1; + jv = (e0 - 3) / 24; + if (jv < 0) + jv = 0; + q0 = e0 - 24 * (jv + 1); + + /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */ + j = jv - jx; + m = jx + jk; + for (i = 0; i <= m; i++, j++) + f[i] = (j < 0) ? zero : (double) ipio2[j]; + + /* compute q[0],q[1],...q[jk] */ + for (i = 0; i <= jk; i++) { + for (j = 0, fw = 0.0; j <= jx; j++) + fw += x[j] * f[jx + i - j]; + q[i] = fw; + } + + jz = jk; + recompute: + /* distill q[] into iq[] reversingly */ + for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) { + fw = (double) ((int32_t) (twon24 * z)); + iq[i] = (int32_t) (z - two24 * fw); + z = q[j - 1] + fw; + } + + /* compute n */ + z = scalbn(z, q0); /* actual value of z */ + z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */ + n = (int32_t) z; + z -= (double) n; + ih = 0; + if (q0 > 0) { /* need iq[jz-1] to determine n */ + i = (iq[jz - 1] >> (24 - q0)); + n += i; + iq[jz - 1] -= i << (24 - q0); + ih = iq[jz - 1] >> (23 - q0); + } else if (q0 == 0) + ih = iq[jz - 1] >> 23; + else if (z >= 0.5) + ih = 2; + + if (ih > 0) { /* q > 0.5 */ + n += 1; + carry = 0; + for (i = 0; i < jz; i++) { /* compute 1-q */ + j = iq[i]; + if (carry == 0) { + if (j != 0) { + carry = 1; + iq[i] = 0x1000000 - j; + } + } else + iq[i] = 0xffffff - j; + } + if (q0 > 0) { /* rare case: chance is 1 in 12 */ + switch (q0) { + case 1: + iq[jz - 1] &= 0x7fffff; + break; + case 2: + iq[jz - 1] &= 0x3fffff; + break; + } + } + if (ih == 2) { + z = one - z; + if (carry != 0) + z -= scalbn(one, q0); + } + } + + /* check if recomputation is needed */ + if (z == zero) { + j = 0; + for (i = jz - 1; i >= jk; i--) + j |= iq[i]; + if (j == 0) { /* need recomputation */ + for (k = 1; iq[jk - k] == 0; k++); /* k = no. of terms needed */ + + for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */ + f[jx + i] = (double) ipio2[jv + i]; + for (j = 0, fw = 0.0; j <= jx; j++) + fw += x[j] * f[jx + i - j]; + q[i] = fw; + } + jz += k; + goto recompute; + } + } + + /* chop off zero terms */ + if (z == 0.0) { + jz -= 1; + q0 -= 24; + while (iq[jz] == 0) { + jz--; + q0 -= 24; + } + } else { /* break z into 24-bit if necessary */ + z = scalbn(z, -q0); + if (z >= two24) { + fw = (double) ((int32_t) (twon24 * z)); + iq[jz] = (int32_t) (z - two24 * fw); + jz += 1; + q0 += 24; + iq[jz] = (int32_t) fw; + } else + iq[jz] = (int32_t) z; + } + + /* convert integer "bit" chunk to floating-point value */ + fw = scalbn(one, q0); + for (i = jz; i >= 0; i--) { + q[i] = fw * (double) iq[i]; + fw *= twon24; + } + + /* compute PIo2[0,...,jp]*q[jz,...,0] */ + for (i = jz; i >= 0; i--) { + for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++) + fw += PIo2[k] * q[i + k]; + fq[jz - i] = fw; + } + + /* compress fq[] into y[] */ + switch (prec) { + case 0: + fw = 0.0; + for (i = jz; i >= 0; i--) + fw += fq[i]; + y[0] = (ih == 0) ? fw : -fw; + break; + case 1: + case 2: + fw = 0.0; + for (i = jz; i >= 0; i--) + fw += fq[i]; + y[0] = (ih == 0) ? fw : -fw; + fw = fq[0] - fw; + for (i = 1; i <= jz; i++) + fw += fq[i]; + y[1] = (ih == 0) ? fw : -fw; + break; + case 3: /* painful */ + for (i = jz; i > 0; i--) { + fw = fq[i - 1] + fq[i]; + fq[i] += fq[i - 1] - fw; + fq[i - 1] = fw; + } + for (i = jz; i > 1; i--) { + fw = fq[i - 1] + fq[i]; + fq[i] += fq[i - 1] - fw; + fq[i - 1] = fw; + } + for (fw = 0.0, i = jz; i >= 2; i--) + fw += fq[i]; + if (ih == 0) { + y[0] = fq[0]; + y[1] = fq[1]; + y[2] = fw; + } else { + y[0] = -fq[0]; + y[1] = -fq[1]; + y[2] = -fw; + } + } + return n & 7; +}