view src/thread/os2/SDL_syscond.c @ 1629:ef4a796e7f24

Fixed bug #55 From Christian Walther: When writing my patch for #12, I ended up doing all sorts of changes to the way application/window activating/deactivating is handled in the Quartz backend, resulting in the attached patch. It does make the code a bit cleaner IMHO, but as it might be regarded as a case of "if it ain't broken, don't fix it" I'd like to hear other people's opinion about it. Please shout if some change strikes you as unnecessary or wrong, and I'll explain the reasons behind it. As far as I tested it, it does not introduce any new bugs, but I may well have missed some. - The most fundamental change (that triggered most of the others) is irrelevant for the usual single-window SDL applications, it only affects the people who are crazy enough to display other Cocoa windows alongside the SDL window (I'm actually doing this currently, although the additional window only displays debugging info and won't be present in the final product): Before, some things were done on the application becoming active, some on the window becoming key, and some on the window becoming main. Conceptually, all these actions belong to the window becoming key, so that's what I implemented. However, since in a single-window application these three events always happen together, the previous implementation "ain't broken". - This slightly changed the meaning of the SDL_APPMOUSEFOCUS flag from SDL_GetAppState(): Before, it meant "window is main and mouse is inside window (or mode is fullscreen)". Now, it means "window is key and mouse is inside window (or mode is fullscreen)". It makes more sense to me that way. (See http://developer.apple.com/documentation/Cocoa/Conceptual/WinPanel/Concepts/ChangingMainKeyWindow.html for a discussion of what key and main windows are.) The other two flags are unchanged: SDL_APPACTIVE = application is not hidden and window is not minimized, SDL_APPINPUTFOCUS = window is key (or mode is fullscreen). - As a side effect, the reorganization fixes the following two issues (and maybe others) (but they could also be fixed in less invasive ways): * A regression that was introduced in revision 1.42 of SDL_QuartzVideo.m (http://libsdl.org/cgi/cvsweb.cgi/SDL12/src/video/quartz/SDL_QuartzVideo.m.diff?r1=1.41&r2=1.42) (from half-desirable to undesirable behavior): Situation: While in windowed mode, hide the cursor using SDL_ShowCursor(SDL_DISABLE), move the mouse outside of the window so that the cursor becomes visible again, and SDL_SetVideoMode() to a fullscreen mode. What happened before revision 1.42: The cursor is visible, but becomes invisible as soon as the mouse is moved (half-desirable). What happens in revision 1.42 and after (including current CVS): The cursor is visible and stays visible (undesirable). What happens after my patch: The cursor is invisible from the beginning (desirable). * When the cursor is hidden and grabbed, switch away from the application using cmd-tab (which ungrabs and makes the cursor visible), move the cursor outside of the SDL window, then cmd-tab back to the application. In 1.2.8 and in the current CVS, the cursor is re-grabbed, but it stays visible (immovable in the middle of the window). With my patch, the cursor is correctly re-grabbed and hidden. (For some reason, it still doesn't work correctly if you switch back to the application using the dock instead of cmd-tab. I haven't been able to figure out why. I can step over [NSCursor hide] being called in the debugger, but it seems to have no effect.) - The patch includes my patch for #12 (it was easier to obtain using cvs diff that way). If you apply both of them, you will end up with 6 duplicate lines in SDL_QuartzEvents.m.
author Sam Lantinga <slouken@libsdl.org>
date Thu, 13 Apr 2006 14:17:48 +0000
parents d910939febfa
children 782fd950bd46 c121d94672cb a1b03ba2fcd0
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2006 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    Sam Lantinga
    slouken@libsdl.org
*/
#include "SDL_config.h"

/* An implementation of condition variables using semaphores and mutexes */
/*
   This implementation borrows heavily from the BeOS condition variable
   implementation, written by Christopher Tate and Owen Smith.  Thanks!
 */

#include "SDL_thread.h"

struct SDL_cond
{
	SDL_mutex *lock;
	int waiting;
	int signals;
	SDL_sem *wait_sem;
	SDL_sem *wait_done;
};

/* Create a condition variable */
DECLSPEC SDL_cond * SDLCALL SDL_CreateCond(void)
{
	SDL_cond *cond;

	cond = (SDL_cond *) SDL_malloc(sizeof(SDL_cond));
	if ( cond ) {
		cond->lock = SDL_CreateMutex();
		cond->wait_sem = SDL_CreateSemaphore(0);
		cond->wait_done = SDL_CreateSemaphore(0);
		cond->waiting = cond->signals = 0;
		if ( ! cond->lock || ! cond->wait_sem || ! cond->wait_done ) {
			SDL_DestroyCond(cond);
			cond = NULL;
		}
	} else {
		SDL_OutOfMemory();
	}
	return(cond);
}

/* Destroy a condition variable */
DECLSPEC void SDLCALL SDL_DestroyCond(SDL_cond *cond)
{
	if ( cond ) {
		if ( cond->wait_sem ) {
			SDL_DestroySemaphore(cond->wait_sem);
		}
		if ( cond->wait_done ) {
			SDL_DestroySemaphore(cond->wait_done);
		}
		if ( cond->lock ) {
			SDL_DestroyMutex(cond->lock);
		}
		SDL_free(cond);
	}
}

/* Restart one of the threads that are waiting on the condition variable */
DECLSPEC int SDLCALL SDL_CondSignal(SDL_cond *cond)
{
	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* If there are waiting threads not already signalled, then
	   signal the condition and wait for the thread to respond.
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->waiting > cond->signals ) {
		++cond->signals;
		SDL_SemPost(cond->wait_sem);
		SDL_UnlockMutex(cond->lock);
		SDL_SemWait(cond->wait_done);
	} else {
		SDL_UnlockMutex(cond->lock);
	}

	return 0;
}

/* Restart all threads that are waiting on the condition variable */
DECLSPEC int SDLCALL SDL_CondBroadcast(SDL_cond *cond)
{
	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* If there are waiting threads not already signalled, then
	   signal the condition and wait for the thread to respond.
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->waiting > cond->signals ) {
		int i, num_waiting;

		num_waiting = (cond->waiting - cond->signals);
		cond->signals = cond->waiting;
		for ( i=0; i<num_waiting; ++i ) {
			SDL_SemPost(cond->wait_sem);
		}
		/* Now all released threads are blocked here, waiting for us.
		   Collect them all (and win fabulous prizes!) :-)
		 */
		SDL_UnlockMutex(cond->lock);
		for ( i=0; i<num_waiting; ++i ) {
			SDL_SemWait(cond->wait_done);
		}
	} else {
		SDL_UnlockMutex(cond->lock);
	}

	return 0;
}

/* Wait on the condition variable for at most 'ms' milliseconds.
   The mutex must be locked before entering this function!
   The mutex is unlocked during the wait, and locked again after the wait.

Typical use:

Thread A:
	SDL_LockMutex(lock);
	while ( ! condition ) {
		SDL_CondWait(cond);
	}
	SDL_UnlockMutex(lock);

Thread B:
	SDL_LockMutex(lock);
	...
	condition = true;
	...
	SDL_UnlockMutex(lock);
 */
DECLSPEC int SDLCALL SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms)
{
	int retval;

	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* Obtain the protection mutex, and increment the number of waiters.
	   This allows the signal mechanism to only perform a signal if there
	   are waiting threads.
	 */
	SDL_LockMutex(cond->lock);
	++cond->waiting;
	SDL_UnlockMutex(cond->lock);

	/* Unlock the mutex, as is required by condition variable semantics */
	SDL_UnlockMutex(mutex);

	/* Wait for a signal */
	if ( ms == SDL_MUTEX_MAXWAIT ) {
		retval = SDL_SemWait(cond->wait_sem);
	} else {
		retval = SDL_SemWaitTimeout(cond->wait_sem, ms);
	}

	/* Let the signaler know we have completed the wait, otherwise
           the signaler can race ahead and get the condition semaphore
           if we are stopped between the mutex unlock and semaphore wait,
           giving a deadlock.  See the following URL for details:
        http://www-classic.be.com/aboutbe/benewsletter/volume_III/Issue40.html
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->signals > 0 ) {
		/* If we timed out, we need to eat a condition signal */
		if ( retval > 0 ) {
			SDL_SemWait(cond->wait_sem);
		}
		/* We always notify the signal thread that we are done */
		SDL_SemPost(cond->wait_done);

		/* Signal handshake complete */
		--cond->signals;
	}
	--cond->waiting;
	SDL_UnlockMutex(cond->lock);

	/* Lock the mutex, as is required by condition variable semantics */
	SDL_LockMutex(mutex);

	return retval;
}

/* Wait on the condition variable forever */
DECLSPEC int SDLCALL SDL_CondWait(SDL_cond *cond, SDL_mutex *mutex)
{
	return SDL_CondWaitTimeout(cond, mutex, SDL_MUTEX_MAXWAIT);
}