Mercurial > sdl-ios-xcode
view src/libm/k_sin.c @ 3162:dc1eb82ffdaa
Von: Thomas Zimmermann
Betreff: [SDL] [PATCH] Make static variables const
Datum: Tue, 19 May 2009 19:45:37 +0200
Hi,
this is a set of simple changes which make some of SDL's internal static
arrays constant. The purpose is to shrink the number of write-able
static bytes and thus increase the number of memory pages shared between
SDL applications.
The patch set is against trunk@4513. Each of the attached patch files is
specific to a sub-system. The set is completed by a second mail, because
of the list's 40 KiB limit.
The files readelf-r4513.txt and readelf-const-patch.txt where made by
calling 'readelf -S libSDL.so'. They show the difference in ELF sections
without and with the patch. Some numbers measured on my x86-64:
Before
[13] .rodata PROGBITS 00000000000eaaa0 000eaaa0
0000000000008170 0000000000000000 A 0 0 32
[19] .data.rel.ro PROGBITS 00000000003045e0 001045e0
00000000000023d0 0000000000000000 WA 0 0 32
[23] .data PROGBITS 00000000003076e0 001076e0
0000000000004988 0000000000000000 WA 0 0 32
After
[13] .rodata PROGBITS 00000000000eaaa0 000eaaa0
0000000000009a50 0000000000000000 A 0 0 32
[19] .data.rel.ro PROGBITS 0000000000306040 00106040
0000000000002608 0000000000000000 WA 0 0 32
[23] .data PROGBITS 0000000000309360 00109360
0000000000002e88 0000000000000000 WA 0 0 32
The size of the write-able data section decreased considerably. Some
entries became const-after-relocation, while most of its content went
straight into the read-only data section.
Best regards, Thomas
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Wed, 03 Jun 2009 04:37:27 +0000 |
parents | a98604b691c8 |
children |
line wrap: on
line source
/* @(#)k_sin.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static const char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $"; #endif /* __kernel_sin( x, y, iy) * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input iy indicates whether y is 0. (if iy=0, y assume to be 0). * * Algorithm * 1. Since sin(-x) = -sin(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0. * 3. sin(x) is approximated by a polynomial of degree 13 on * [0,pi/4] * 3 13 * sin(x) ~ x + S1*x + ... + S6*x * where * * |sin(x) 2 4 6 8 10 12 | -58 * |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x +S6*x )| <= 2 * | x | * * 4. sin(x+y) = sin(x) + sin'(x')*y * ~ sin(x) + (1-x*x/2)*y * For better accuracy, let * 3 2 2 2 2 * r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6)))) * then 3 2 * sin(x) = x + (S1*x + (x *(r-y/2)+y)) */ #include "math.h" #include "math_private.h" #ifdef __STDC__ static const double #else static double #endif half = 5.00000000000000000000e-01, /* 0x3FE00000, 0x00000000 */ S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */ S2 = 8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */ S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */ S4 = 2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */ S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */ S6 = 1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */ #ifdef __STDC__ double attribute_hidden __kernel_sin(double x, double y, int iy) #else double attribute_hidden __kernel_sin(x, y, iy) double x, y; int iy; /* iy=0 if y is zero */ #endif { double z, r, v; int32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7fffffff; /* high word of x */ if (ix < 0x3e400000) { /* |x| < 2**-27 */ if ((int) x == 0) return x; } /* generate inexact */ z = x * x; v = z * x; r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6))); if (iy == 0) return x + v * (S1 + z * r); else return x - ((z * (half * y - v * r) - y) - v * S1); }