Mercurial > sdl-ios-xcode
view src/libm/k_cos.c @ 2992:dbff5769d742
The core pointer is comprised of merging the inputs of all mice.
If there are other mice, they should show up in the device list, and
we want to report events from those devices instead of the core events.
However, if XInput isn't supported or we can't find other mice in the
device list, we'll add the core pointer and interpret normal mouse events.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 04 Jan 2009 18:29:20 +0000 |
parents | a98604b691c8 |
children | dc1eb82ffdaa |
line wrap: on
line source
/* @(#)k_cos.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: k_cos.c,v 1.8 1995/05/10 20:46:22 jtc Exp $"; #endif /* * __kernel_cos( x, y ) * kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * * Algorithm * 1. Since cos(-x) = cos(x), we need only to consider positive x. * 2. if x < 2^-27 (hx<0x3e400000 0), return 1 with inexact if x!=0. * 3. cos(x) is approximated by a polynomial of degree 14 on * [0,pi/4] * 4 14 * cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x * where the remez error is * * | 2 4 6 8 10 12 14 | -58 * |cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x +C6*x )| <= 2 * | | * * 4 6 8 10 12 14 * 4. let r = C1*x +C2*x +C3*x +C4*x +C5*x +C6*x , then * cos(x) = 1 - x*x/2 + r * since cos(x+y) ~ cos(x) - sin(x)*y * ~ cos(x) - x*y, * a correction term is necessary in cos(x) and hence * cos(x+y) = 1 - (x*x/2 - (r - x*y)) * For better accuracy when x > 0.3, let qx = |x|/4 with * the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125. * Then * cos(x+y) = (1-qx) - ((x*x/2-qx) - (r-x*y)). * Note that 1-qx and (x*x/2-qx) is EXACT here, and the * magnitude of the latter is at least a quarter of x*x/2, * thus, reducing the rounding error in the subtraction. */ #include "math.h" #include "math_private.h" #ifdef __STDC__ static const double #else static double #endif one = 1.00000000000000000000e+00, /* 0x3FF00000, 0x00000000 */ C1 = 4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */ C2 = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */ C3 = 2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */ C4 = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */ C5 = 2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */ C6 = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */ #ifdef __STDC__ double attribute_hidden __kernel_cos(double x, double y) #else double attribute_hidden __kernel_cos(x, y) double x, y; #endif { double a, hz, z, r, qx; int32_t ix; GET_HIGH_WORD(ix, x); ix &= 0x7fffffff; /* ix = |x|'s high word */ if (ix < 0x3e400000) { /* if x < 2**27 */ if (((int) x) == 0) return one; /* generate inexact */ } z = x * x; r = z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * C6))))); if (ix < 0x3FD33333) /* if |x| < 0.3 */ return one - (0.5 * z - (z * r - x * y)); else { if (ix > 0x3fe90000) { /* x > 0.78125 */ qx = 0.28125; } else { INSERT_WORDS(qx, ix - 0x00200000, 0); /* x/4 */ } hz = 0.5 * z - qx; a = one - qx; return a - (hz - (z * r - x * y)); } }