view src/audio/SDL_wave.c @ 4466:ba66ff156955

Added the automated test plist file and modified .hgignore to be less aggressive. Discovered that the new plist file for the automated test was not checked in because the .hgignore file was too aggressive. I changed the .hgignore to not ignore the Xcode directory and instead added a longer list of things to ignore.
author Eric Wing <ewing . public |-at-| gmail . com>
date Wed, 12 May 2010 12:49:28 -0700
parents f7b03b6838cb
children b530ef003506
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2010 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    Sam Lantinga
    slouken@libsdl.org
*/
#include "SDL_config.h"

/* Microsoft WAVE file loading routines */

#include "SDL_audio.h"
#include "SDL_wave.h"


static int ReadChunk(SDL_RWops * src, Chunk * chunk);

struct MS_ADPCM_decodestate
{
    Uint8 hPredictor;
    Uint16 iDelta;
    Sint16 iSamp1;
    Sint16 iSamp2;
};
static struct MS_ADPCM_decoder
{
    WaveFMT wavefmt;
    Uint16 wSamplesPerBlock;
    Uint16 wNumCoef;
    Sint16 aCoeff[7][2];
    /* * * */
    struct MS_ADPCM_decodestate state[2];
} MS_ADPCM_state;

static int
InitMS_ADPCM(WaveFMT * format)
{
    Uint8 *rogue_feel;
    Uint16 extra_info;
    int i;

    /* Set the rogue pointer to the MS_ADPCM specific data */
    MS_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
    MS_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
    MS_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
    MS_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
    MS_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
    MS_ADPCM_state.wavefmt.bitspersample =
        SDL_SwapLE16(format->bitspersample);
    rogue_feel = (Uint8 *) format + sizeof(*format);
    if (sizeof(*format) == 16) {
        extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]);
        rogue_feel += sizeof(Uint16);
    }
    MS_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]);
    rogue_feel += sizeof(Uint16);
    MS_ADPCM_state.wNumCoef = ((rogue_feel[1] << 8) | rogue_feel[0]);
    rogue_feel += sizeof(Uint16);
    if (MS_ADPCM_state.wNumCoef != 7) {
        SDL_SetError("Unknown set of MS_ADPCM coefficients");
        return (-1);
    }
    for (i = 0; i < MS_ADPCM_state.wNumCoef; ++i) {
        MS_ADPCM_state.aCoeff[i][0] = ((rogue_feel[1] << 8) | rogue_feel[0]);
        rogue_feel += sizeof(Uint16);
        MS_ADPCM_state.aCoeff[i][1] = ((rogue_feel[1] << 8) | rogue_feel[0]);
        rogue_feel += sizeof(Uint16);
    }
    return (0);
}

static Sint32
MS_ADPCM_nibble(struct MS_ADPCM_decodestate *state,
                Uint8 nybble, Sint16 * coeff)
{
    const Sint32 max_audioval = ((1 << (16 - 1)) - 1);
    const Sint32 min_audioval = -(1 << (16 - 1));
    const Sint32 adaptive[] = {
        230, 230, 230, 230, 307, 409, 512, 614,
        768, 614, 512, 409, 307, 230, 230, 230
    };
    Sint32 new_sample, delta;

    new_sample = ((state->iSamp1 * coeff[0]) +
                  (state->iSamp2 * coeff[1])) / 256;
    if (nybble & 0x08) {
        new_sample += state->iDelta * (nybble - 0x10);
    } else {
        new_sample += state->iDelta * nybble;
    }
    if (new_sample < min_audioval) {
        new_sample = min_audioval;
    } else if (new_sample > max_audioval) {
        new_sample = max_audioval;
    }
    delta = ((Sint32) state->iDelta * adaptive[nybble]) / 256;
    if (delta < 16) {
        delta = 16;
    }
    state->iDelta = (Uint16) delta;
    state->iSamp2 = state->iSamp1;
    state->iSamp1 = (Sint16) new_sample;
    return (new_sample);
}

static int
MS_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len)
{
    struct MS_ADPCM_decodestate *state[2];
    Uint8 *freeable, *encoded, *decoded;
    Sint32 encoded_len, samplesleft;
    Sint8 nybble, stereo;
    Sint16 *coeff[2];
    Sint32 new_sample;

    /* Allocate the proper sized output buffer */
    encoded_len = *audio_len;
    encoded = *audio_buf;
    freeable = *audio_buf;
    *audio_len = (encoded_len / MS_ADPCM_state.wavefmt.blockalign) *
        MS_ADPCM_state.wSamplesPerBlock *
        MS_ADPCM_state.wavefmt.channels * sizeof(Sint16);
    *audio_buf = (Uint8 *) SDL_malloc(*audio_len);
    if (*audio_buf == NULL) {
        SDL_Error(SDL_ENOMEM);
        return (-1);
    }
    decoded = *audio_buf;

    /* Get ready... Go! */
    stereo = (MS_ADPCM_state.wavefmt.channels == 2);
    state[0] = &MS_ADPCM_state.state[0];
    state[1] = &MS_ADPCM_state.state[stereo];
    while (encoded_len >= MS_ADPCM_state.wavefmt.blockalign) {
        /* Grab the initial information for this block */
        state[0]->hPredictor = *encoded++;
        if (stereo) {
            state[1]->hPredictor = *encoded++;
        }
        state[0]->iDelta = ((encoded[1] << 8) | encoded[0]);
        encoded += sizeof(Sint16);
        if (stereo) {
            state[1]->iDelta = ((encoded[1] << 8) | encoded[0]);
            encoded += sizeof(Sint16);
        }
        state[0]->iSamp1 = ((encoded[1] << 8) | encoded[0]);
        encoded += sizeof(Sint16);
        if (stereo) {
            state[1]->iSamp1 = ((encoded[1] << 8) | encoded[0]);
            encoded += sizeof(Sint16);
        }
        state[0]->iSamp2 = ((encoded[1] << 8) | encoded[0]);
        encoded += sizeof(Sint16);
        if (stereo) {
            state[1]->iSamp2 = ((encoded[1] << 8) | encoded[0]);
            encoded += sizeof(Sint16);
        }
        coeff[0] = MS_ADPCM_state.aCoeff[state[0]->hPredictor];
        coeff[1] = MS_ADPCM_state.aCoeff[state[1]->hPredictor];

        /* Store the two initial samples we start with */
        decoded[0] = state[0]->iSamp2 & 0xFF;
        decoded[1] = state[0]->iSamp2 >> 8;
        decoded += 2;
        if (stereo) {
            decoded[0] = state[1]->iSamp2 & 0xFF;
            decoded[1] = state[1]->iSamp2 >> 8;
            decoded += 2;
        }
        decoded[0] = state[0]->iSamp1 & 0xFF;
        decoded[1] = state[0]->iSamp1 >> 8;
        decoded += 2;
        if (stereo) {
            decoded[0] = state[1]->iSamp1 & 0xFF;
            decoded[1] = state[1]->iSamp1 >> 8;
            decoded += 2;
        }

        /* Decode and store the other samples in this block */
        samplesleft = (MS_ADPCM_state.wSamplesPerBlock - 2) *
            MS_ADPCM_state.wavefmt.channels;
        while (samplesleft > 0) {
            nybble = (*encoded) >> 4;
            new_sample = MS_ADPCM_nibble(state[0], nybble, coeff[0]);
            decoded[0] = new_sample & 0xFF;
            new_sample >>= 8;
            decoded[1] = new_sample & 0xFF;
            decoded += 2;

            nybble = (*encoded) & 0x0F;
            new_sample = MS_ADPCM_nibble(state[1], nybble, coeff[1]);
            decoded[0] = new_sample & 0xFF;
            new_sample >>= 8;
            decoded[1] = new_sample & 0xFF;
            decoded += 2;

            ++encoded;
            samplesleft -= 2;
        }
        encoded_len -= MS_ADPCM_state.wavefmt.blockalign;
    }
    SDL_free(freeable);
    return (0);
}

struct IMA_ADPCM_decodestate
{
    Sint32 sample;
    Sint8 index;
};
static struct IMA_ADPCM_decoder
{
    WaveFMT wavefmt;
    Uint16 wSamplesPerBlock;
    /* * * */
    struct IMA_ADPCM_decodestate state[2];
} IMA_ADPCM_state;

static int
InitIMA_ADPCM(WaveFMT * format)
{
    Uint8 *rogue_feel;
    Uint16 extra_info;

    /* Set the rogue pointer to the IMA_ADPCM specific data */
    IMA_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
    IMA_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
    IMA_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
    IMA_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
    IMA_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
    IMA_ADPCM_state.wavefmt.bitspersample =
        SDL_SwapLE16(format->bitspersample);
    rogue_feel = (Uint8 *) format + sizeof(*format);
    if (sizeof(*format) == 16) {
        extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]);
        rogue_feel += sizeof(Uint16);
    }
    IMA_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]);
    return (0);
}

static Sint32
IMA_ADPCM_nibble(struct IMA_ADPCM_decodestate *state, Uint8 nybble)
{
    const Sint32 max_audioval = ((1 << (16 - 1)) - 1);
    const Sint32 min_audioval = -(1 << (16 - 1));
    const int index_table[16] = {
        -1, -1, -1, -1,
        2, 4, 6, 8,
        -1, -1, -1, -1,
        2, 4, 6, 8
    };
    const Sint32 step_table[89] = {
        7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31,
        34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130,
        143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408,
        449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
        1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327,
        3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630,
        9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350,
        22385, 24623, 27086, 29794, 32767
    };
    Sint32 delta, step;

    /* Compute difference and new sample value */
    step = step_table[state->index];
    delta = step >> 3;
    if (nybble & 0x04)
        delta += step;
    if (nybble & 0x02)
        delta += (step >> 1);
    if (nybble & 0x01)
        delta += (step >> 2);
    if (nybble & 0x08)
        delta = -delta;
    state->sample += delta;

    /* Update index value */
    state->index += index_table[nybble];
    if (state->index > 88) {
        state->index = 88;
    } else if (state->index < 0) {
        state->index = 0;
    }

    /* Clamp output sample */
    if (state->sample > max_audioval) {
        state->sample = max_audioval;
    } else if (state->sample < min_audioval) {
        state->sample = min_audioval;
    }
    return (state->sample);
}

/* Fill the decode buffer with a channel block of data (8 samples) */
static void
Fill_IMA_ADPCM_block(Uint8 * decoded, Uint8 * encoded,
                     int channel, int numchannels,
                     struct IMA_ADPCM_decodestate *state)
{
    int i;
    Sint8 nybble;
    Sint32 new_sample;

    decoded += (channel * 2);
    for (i = 0; i < 4; ++i) {
        nybble = (*encoded) & 0x0F;
        new_sample = IMA_ADPCM_nibble(state, nybble);
        decoded[0] = new_sample & 0xFF;
        new_sample >>= 8;
        decoded[1] = new_sample & 0xFF;
        decoded += 2 * numchannels;

        nybble = (*encoded) >> 4;
        new_sample = IMA_ADPCM_nibble(state, nybble);
        decoded[0] = new_sample & 0xFF;
        new_sample >>= 8;
        decoded[1] = new_sample & 0xFF;
        decoded += 2 * numchannels;

        ++encoded;
    }
}

static int
IMA_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len)
{
    struct IMA_ADPCM_decodestate *state;
    Uint8 *freeable, *encoded, *decoded;
    Sint32 encoded_len, samplesleft;
    unsigned int c, channels;

    /* Check to make sure we have enough variables in the state array */
    channels = IMA_ADPCM_state.wavefmt.channels;
    if (channels > SDL_arraysize(IMA_ADPCM_state.state)) {
        SDL_SetError("IMA ADPCM decoder can only handle %d channels",
                     SDL_arraysize(IMA_ADPCM_state.state));
        return (-1);
    }
    state = IMA_ADPCM_state.state;

    /* Allocate the proper sized output buffer */
    encoded_len = *audio_len;
    encoded = *audio_buf;
    freeable = *audio_buf;
    *audio_len = (encoded_len / IMA_ADPCM_state.wavefmt.blockalign) *
        IMA_ADPCM_state.wSamplesPerBlock *
        IMA_ADPCM_state.wavefmt.channels * sizeof(Sint16);
    *audio_buf = (Uint8 *) SDL_malloc(*audio_len);
    if (*audio_buf == NULL) {
        SDL_Error(SDL_ENOMEM);
        return (-1);
    }
    decoded = *audio_buf;

    /* Get ready... Go! */
    while (encoded_len >= IMA_ADPCM_state.wavefmt.blockalign) {
        /* Grab the initial information for this block */
        for (c = 0; c < channels; ++c) {
            /* Fill the state information for this block */
            state[c].sample = ((encoded[1] << 8) | encoded[0]);
            encoded += 2;
            if (state[c].sample & 0x8000) {
                state[c].sample -= 0x10000;
            }
            state[c].index = *encoded++;
            /* Reserved byte in buffer header, should be 0 */
            if (*encoded++ != 0) {
                /* Uh oh, corrupt data?  Buggy code? */ ;
            }

            /* Store the initial sample we start with */
            decoded[0] = (Uint8) (state[c].sample & 0xFF);
            decoded[1] = (Uint8) (state[c].sample >> 8);
            decoded += 2;
        }

        /* Decode and store the other samples in this block */
        samplesleft = (IMA_ADPCM_state.wSamplesPerBlock - 1) * channels;
        while (samplesleft > 0) {
            for (c = 0; c < channels; ++c) {
                Fill_IMA_ADPCM_block(decoded, encoded,
                                     c, channels, &state[c]);
                encoded += 4;
                samplesleft -= 8;
            }
            decoded += (channels * 8 * 2);
        }
        encoded_len -= IMA_ADPCM_state.wavefmt.blockalign;
    }
    SDL_free(freeable);
    return (0);
}

SDL_AudioSpec *
SDL_LoadWAV_RW(SDL_RWops * src, int freesrc,
               SDL_AudioSpec * spec, Uint8 ** audio_buf, Uint32 * audio_len)
{
    int was_error;
    Chunk chunk;
    int lenread;
    int IEEE_float_encoded, MS_ADPCM_encoded, IMA_ADPCM_encoded;
    int samplesize;

    /* WAV magic header */
    Uint32 RIFFchunk;
    Uint32 wavelen = 0;
    Uint32 WAVEmagic;
    Uint32 headerDiff = 0;

    /* FMT chunk */
    WaveFMT *format = NULL;

    /* Make sure we are passed a valid data source */
    was_error = 0;
    if (src == NULL) {
        was_error = 1;
        goto done;
    }

    /* Check the magic header */
    RIFFchunk = SDL_ReadLE32(src);
    wavelen = SDL_ReadLE32(src);
    if (wavelen == WAVE) {      /* The RIFFchunk has already been read */
        WAVEmagic = wavelen;
        wavelen = RIFFchunk;
        RIFFchunk = RIFF;
    } else {
        WAVEmagic = SDL_ReadLE32(src);
    }
    if ((RIFFchunk != RIFF) || (WAVEmagic != WAVE)) {
        SDL_SetError("Unrecognized file type (not WAVE)");
        was_error = 1;
        goto done;
    }
    headerDiff += sizeof(Uint32);       /* for WAVE */

    /* Read the audio data format chunk */
    chunk.data = NULL;
    do {
        if (chunk.data != NULL) {
            SDL_free(chunk.data);
            chunk.data = NULL;
        }
        lenread = ReadChunk(src, &chunk);
        if (lenread < 0) {
            was_error = 1;
            goto done;
        }
        /* 2 Uint32's for chunk header+len, plus the lenread */
        headerDiff += lenread + 2 * sizeof(Uint32);
    } while ((chunk.magic == FACT) || (chunk.magic == LIST));

    /* Decode the audio data format */
    format = (WaveFMT *) chunk.data;
    if (chunk.magic != FMT) {
        SDL_SetError("Complex WAVE files not supported");
        was_error = 1;
        goto done;
    }
    IEEE_float_encoded = MS_ADPCM_encoded = IMA_ADPCM_encoded = 0;
    switch (SDL_SwapLE16(format->encoding)) {
    case PCM_CODE:
        /* We can understand this */
        break;
    case IEEE_FLOAT_CODE:
        IEEE_float_encoded = 1;
        /* We can understand this */
        break;
    case MS_ADPCM_CODE:
        /* Try to understand this */
        if (InitMS_ADPCM(format) < 0) {
            was_error = 1;
            goto done;
        }
        MS_ADPCM_encoded = 1;
        break;
    case IMA_ADPCM_CODE:
        /* Try to understand this */
        if (InitIMA_ADPCM(format) < 0) {
            was_error = 1;
            goto done;
        }
        IMA_ADPCM_encoded = 1;
        break;
    case MP3_CODE:
        SDL_SetError("MPEG Layer 3 data not supported",
                     SDL_SwapLE16(format->encoding));
        was_error = 1;
        goto done;
    default:
        SDL_SetError("Unknown WAVE data format: 0x%.4x",
                     SDL_SwapLE16(format->encoding));
        was_error = 1;
        goto done;
    }
    SDL_memset(spec, 0, (sizeof *spec));
    spec->freq = SDL_SwapLE32(format->frequency);

    if (IEEE_float_encoded) {
        if ((SDL_SwapLE16(format->bitspersample)) != 32) {
            was_error = 1;
        } else {
            spec->format = AUDIO_F32;
        }
    } else {
        switch (SDL_SwapLE16(format->bitspersample)) {
        case 4:
            if (MS_ADPCM_encoded || IMA_ADPCM_encoded) {
                spec->format = AUDIO_S16;
            } else {
                was_error = 1;
            }
            break;
        case 8:
            spec->format = AUDIO_U8;
            break;
        case 16:
            spec->format = AUDIO_S16;
            break;
        case 32:
            spec->format = AUDIO_S32;
            break;
        default:
            was_error = 1;
            break;
        }
    }

    if (was_error) {
        SDL_SetError("Unknown %d-bit PCM data format",
                     SDL_SwapLE16(format->bitspersample));
        goto done;
    }
    spec->channels = (Uint8) SDL_SwapLE16(format->channels);
    spec->samples = 4096;       /* Good default buffer size */

    /* Read the audio data chunk */
    *audio_buf = NULL;
    do {
        if (*audio_buf != NULL) {
            SDL_free(*audio_buf);
            *audio_buf = NULL;
        }
        lenread = ReadChunk(src, &chunk);
        if (lenread < 0) {
            was_error = 1;
            goto done;
        }
        *audio_len = lenread;
        *audio_buf = chunk.data;
        if (chunk.magic != DATA)
            headerDiff += lenread + 2 * sizeof(Uint32);
    } while (chunk.magic != DATA);
    headerDiff += 2 * sizeof(Uint32);   /* for the data chunk and len */

    if (MS_ADPCM_encoded) {
        if (MS_ADPCM_decode(audio_buf, audio_len) < 0) {
            was_error = 1;
            goto done;
        }
    }
    if (IMA_ADPCM_encoded) {
        if (IMA_ADPCM_decode(audio_buf, audio_len) < 0) {
            was_error = 1;
            goto done;
        }
    }

    /* Don't return a buffer that isn't a multiple of samplesize */
    samplesize = ((SDL_AUDIO_BITSIZE(spec->format)) / 8) * spec->channels;
    *audio_len &= ~(samplesize - 1);

  done:
    if (format != NULL) {
        SDL_free(format);
    }
    if (src) {
        if (freesrc) {
            SDL_RWclose(src);
        } else {
            /* seek to the end of the file (given by the RIFF chunk) */
            SDL_RWseek(src, wavelen - chunk.length - headerDiff, RW_SEEK_CUR);
        }
    }
    if (was_error) {
        spec = NULL;
    }
    return (spec);
}

/* Since the WAV memory is allocated in the shared library, it must also
   be freed here.  (Necessary under Win32, VC++)
 */
void
SDL_FreeWAV(Uint8 * audio_buf)
{
    if (audio_buf != NULL) {
        SDL_free(audio_buf);
    }
}

static int
ReadChunk(SDL_RWops * src, Chunk * chunk)
{
    chunk->magic = SDL_ReadLE32(src);
    chunk->length = SDL_ReadLE32(src);
    chunk->data = (Uint8 *) SDL_malloc(chunk->length);
    if (chunk->data == NULL) {
        SDL_Error(SDL_ENOMEM);
        return (-1);
    }
    if (SDL_RWread(src, chunk->data, chunk->length, 1) != 1) {
        SDL_Error(SDL_EFREAD);
        SDL_free(chunk->data);
        chunk->data = NULL;
        return (-1);
    }
    return (chunk->length);
}

/* vi: set ts=4 sw=4 expandtab: */