view src/audio/SDL_wave.c @ 3978:b966761fef6c SDL-1.2

Significantly improved XIM support. Fixes Bugzilla #429. Selected notes from the patch's README: = FIXES = This patch fixes the above issues as follows. == X11 events == Moved XFilterEvent just after XNextEvent so that all events are passed to it. Also, XFilterEvent will receive masks indicated by IM through XNFilterEvents IC value as well as masks surpplied by SDL. X11_KeyRepeat is called between XNextEvent and XFilterEvent, after testing an event is a KeyRelease. I'm not 100% comfortable to do so, but I couldn't find a better timing to call it, and use of the function is inevitable. == Xutf8LookupString == Used a longer buffer to receive UTF-8 string. If it is insufficient, a dynamic storage of the requested size will be allocated. The initial size of the buffer is set to 32, because the Japanese text converted from the most widely used benchmark key sequence for Japanese IM, "WATASHINONAMAEHANAKANODESU." has ten Japanese characters in it, that occupies 30 bytes when encoded in UTF-8. == SDL_keysym.unicode == On Windows version of SDL implementation, SDL_keysym.unicode stores UTF-16 encoded unicode characters, one UTF-16 encoding unit per an SDL event. A Unicode supplementary characters are sent to an application as two events. (One with a high surrogate and another with a low surrogate.) The behavior seems reasonable since it is upward compatible with existing handling of BMP characters. I wrote a UTF-8 to UTF-16 conversion function for the purpose. It is designed with the execution speed in mind, having a minimum set of features that my patch requires.
author Ryan C. Gordon <icculus@icculus.org>
date Mon, 25 Jun 2007 19:58:32 +0000
parents 7995cc87b777
children 782fd950bd46 c121d94672cb 96ce26f24b01
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2006 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    Sam Lantinga
    slouken@libsdl.org
*/
#include "SDL_config.h"

/* Microsoft WAVE file loading routines */

#include "SDL_audio.h"
#include "SDL_wave.h"


static int ReadChunk(SDL_RWops *src, Chunk *chunk);

struct MS_ADPCM_decodestate {
	Uint8 hPredictor;
	Uint16 iDelta;
	Sint16 iSamp1;
	Sint16 iSamp2;
};
static struct MS_ADPCM_decoder {
	WaveFMT wavefmt;
	Uint16 wSamplesPerBlock;
	Uint16 wNumCoef;
	Sint16 aCoeff[7][2];
	/* * * */
	struct MS_ADPCM_decodestate state[2];
} MS_ADPCM_state;

static int InitMS_ADPCM(WaveFMT *format)
{
	Uint8 *rogue_feel;
	Uint16 extra_info;
	int i;

	/* Set the rogue pointer to the MS_ADPCM specific data */
	MS_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
	MS_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
	MS_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
	MS_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
	MS_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
	MS_ADPCM_state.wavefmt.bitspersample =
					 SDL_SwapLE16(format->bitspersample);
	rogue_feel = (Uint8 *)format+sizeof(*format);
	if ( sizeof(*format) == 16 ) {
		extra_info = ((rogue_feel[1]<<8)|rogue_feel[0]);
		rogue_feel += sizeof(Uint16);
	}
	MS_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1]<<8)|rogue_feel[0]);
	rogue_feel += sizeof(Uint16);
	MS_ADPCM_state.wNumCoef = ((rogue_feel[1]<<8)|rogue_feel[0]);
	rogue_feel += sizeof(Uint16);
	if ( MS_ADPCM_state.wNumCoef != 7 ) {
		SDL_SetError("Unknown set of MS_ADPCM coefficients");
		return(-1);
	}
	for ( i=0; i<MS_ADPCM_state.wNumCoef; ++i ) {
		MS_ADPCM_state.aCoeff[i][0] = ((rogue_feel[1]<<8)|rogue_feel[0]);
		rogue_feel += sizeof(Uint16);
		MS_ADPCM_state.aCoeff[i][1] = ((rogue_feel[1]<<8)|rogue_feel[0]);
		rogue_feel += sizeof(Uint16);
	}
	return(0);
}

static Sint32 MS_ADPCM_nibble(struct MS_ADPCM_decodestate *state,
					Uint8 nybble, Sint16 *coeff)
{
	const Sint32 max_audioval = ((1<<(16-1))-1);
	const Sint32 min_audioval = -(1<<(16-1));
	const Sint32 adaptive[] = {
		230, 230, 230, 230, 307, 409, 512, 614,
		768, 614, 512, 409, 307, 230, 230, 230
	};
	Sint32 new_sample, delta;

	new_sample = ((state->iSamp1 * coeff[0]) +
		      (state->iSamp2 * coeff[1]))/256;
	if ( nybble & 0x08 ) {
		new_sample += state->iDelta * (nybble-0x10);
	} else {
		new_sample += state->iDelta * nybble;
	}
	if ( new_sample < min_audioval ) {
		new_sample = min_audioval;
	} else
	if ( new_sample > max_audioval ) {
		new_sample = max_audioval;
	}
	delta = ((Sint32)state->iDelta * adaptive[nybble])/256;
	if ( delta < 16 ) {
		delta = 16;
	}
	state->iDelta = (Uint16)delta;
	state->iSamp2 = state->iSamp1;
	state->iSamp1 = (Sint16)new_sample;
	return(new_sample);
}

static int MS_ADPCM_decode(Uint8 **audio_buf, Uint32 *audio_len)
{
	struct MS_ADPCM_decodestate *state[2];
	Uint8 *freeable, *encoded, *decoded;
	Sint32 encoded_len, samplesleft;
	Sint8 nybble, stereo;
	Sint16 *coeff[2];
	Sint32 new_sample;

	/* Allocate the proper sized output buffer */
	encoded_len = *audio_len;
	encoded = *audio_buf;
	freeable = *audio_buf;
	*audio_len = (encoded_len/MS_ADPCM_state.wavefmt.blockalign) * 
				MS_ADPCM_state.wSamplesPerBlock*
				MS_ADPCM_state.wavefmt.channels*sizeof(Sint16);
	*audio_buf = (Uint8 *)SDL_malloc(*audio_len);
	if ( *audio_buf == NULL ) {
		SDL_Error(SDL_ENOMEM);
		return(-1);
	}
	decoded = *audio_buf;

	/* Get ready... Go! */
	stereo = (MS_ADPCM_state.wavefmt.channels == 2);
	state[0] = &MS_ADPCM_state.state[0];
	state[1] = &MS_ADPCM_state.state[stereo];
	while ( encoded_len >= MS_ADPCM_state.wavefmt.blockalign ) {
		/* Grab the initial information for this block */
		state[0]->hPredictor = *encoded++;
		if ( stereo ) {
			state[1]->hPredictor = *encoded++;
		}
		state[0]->iDelta = ((encoded[1]<<8)|encoded[0]);
		encoded += sizeof(Sint16);
		if ( stereo ) {
			state[1]->iDelta = ((encoded[1]<<8)|encoded[0]);
			encoded += sizeof(Sint16);
		}
		state[0]->iSamp1 = ((encoded[1]<<8)|encoded[0]);
		encoded += sizeof(Sint16);
		if ( stereo ) {
			state[1]->iSamp1 = ((encoded[1]<<8)|encoded[0]);
			encoded += sizeof(Sint16);
		}
		state[0]->iSamp2 = ((encoded[1]<<8)|encoded[0]);
		encoded += sizeof(Sint16);
		if ( stereo ) {
			state[1]->iSamp2 = ((encoded[1]<<8)|encoded[0]);
			encoded += sizeof(Sint16);
		}
		coeff[0] = MS_ADPCM_state.aCoeff[state[0]->hPredictor];
		coeff[1] = MS_ADPCM_state.aCoeff[state[1]->hPredictor];

		/* Store the two initial samples we start with */
		decoded[0] = state[0]->iSamp2&0xFF;
		decoded[1] = state[0]->iSamp2>>8;
		decoded += 2;
		if ( stereo ) {
			decoded[0] = state[1]->iSamp2&0xFF;
			decoded[1] = state[1]->iSamp2>>8;
			decoded += 2;
		}
		decoded[0] = state[0]->iSamp1&0xFF;
		decoded[1] = state[0]->iSamp1>>8;
		decoded += 2;
		if ( stereo ) {
			decoded[0] = state[1]->iSamp1&0xFF;
			decoded[1] = state[1]->iSamp1>>8;
			decoded += 2;
		}

		/* Decode and store the other samples in this block */
		samplesleft = (MS_ADPCM_state.wSamplesPerBlock-2)*
					MS_ADPCM_state.wavefmt.channels;
		while ( samplesleft > 0 ) {
			nybble = (*encoded)>>4;
			new_sample = MS_ADPCM_nibble(state[0],nybble,coeff[0]);
			decoded[0] = new_sample&0xFF;
			new_sample >>= 8;
			decoded[1] = new_sample&0xFF;
			decoded += 2;

			nybble = (*encoded)&0x0F;
			new_sample = MS_ADPCM_nibble(state[1],nybble,coeff[1]);
			decoded[0] = new_sample&0xFF;
			new_sample >>= 8;
			decoded[1] = new_sample&0xFF;
			decoded += 2;

			++encoded;
			samplesleft -= 2;
		}
		encoded_len -= MS_ADPCM_state.wavefmt.blockalign;
	}
	SDL_free(freeable);
	return(0);
}

struct IMA_ADPCM_decodestate {
	Sint32 sample;
	Sint8 index;
};
static struct IMA_ADPCM_decoder {
	WaveFMT wavefmt;
	Uint16 wSamplesPerBlock;
	/* * * */
	struct IMA_ADPCM_decodestate state[2];
} IMA_ADPCM_state;

static int InitIMA_ADPCM(WaveFMT *format)
{
	Uint8 *rogue_feel;
	Uint16 extra_info;

	/* Set the rogue pointer to the IMA_ADPCM specific data */
	IMA_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding);
	IMA_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels);
	IMA_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency);
	IMA_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate);
	IMA_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign);
	IMA_ADPCM_state.wavefmt.bitspersample =
					 SDL_SwapLE16(format->bitspersample);
	rogue_feel = (Uint8 *)format+sizeof(*format);
	if ( sizeof(*format) == 16 ) {
		extra_info = ((rogue_feel[1]<<8)|rogue_feel[0]);
		rogue_feel += sizeof(Uint16);
	}
	IMA_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1]<<8)|rogue_feel[0]);
	return(0);
}

static Sint32 IMA_ADPCM_nibble(struct IMA_ADPCM_decodestate *state,Uint8 nybble)
{
	const Sint32 max_audioval = ((1<<(16-1))-1);
	const Sint32 min_audioval = -(1<<(16-1));
	const int index_table[16] = {
		-1, -1, -1, -1,
		 2,  4,  6,  8,
		-1, -1, -1, -1,
		 2,  4,  6,  8
	};
	const Sint32 step_table[89] = {
		7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31,
		34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130,
		143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408,
		449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282,
		1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327,
		3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630,
		9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350,
		22385, 24623, 27086, 29794, 32767
	};
	Sint32 delta, step;

	/* Compute difference and new sample value */
	step = step_table[state->index];
	delta = step >> 3;
	if ( nybble & 0x04 ) delta += step;
	if ( nybble & 0x02 ) delta += (step >> 1);
	if ( nybble & 0x01 ) delta += (step >> 2);
	if ( nybble & 0x08 ) delta = -delta;
	state->sample += delta;

	/* Update index value */
	state->index += index_table[nybble];
	if ( state->index > 88 ) {
		state->index = 88;
	} else
	if ( state->index < 0 ) {
		state->index = 0;
	}

	/* Clamp output sample */
	if ( state->sample > max_audioval ) {
		state->sample = max_audioval;
	} else
	if ( state->sample < min_audioval ) {
		state->sample = min_audioval;
	}
	return(state->sample);
}

/* Fill the decode buffer with a channel block of data (8 samples) */
static void Fill_IMA_ADPCM_block(Uint8 *decoded, Uint8 *encoded,
	int channel, int numchannels, struct IMA_ADPCM_decodestate *state)
{
	int i;
	Sint8 nybble;
	Sint32 new_sample;

	decoded += (channel * 2);
	for ( i=0; i<4; ++i ) {
		nybble = (*encoded)&0x0F;
		new_sample = IMA_ADPCM_nibble(state, nybble);
		decoded[0] = new_sample&0xFF;
		new_sample >>= 8;
		decoded[1] = new_sample&0xFF;
		decoded += 2 * numchannels;

		nybble = (*encoded)>>4;
		new_sample = IMA_ADPCM_nibble(state, nybble);
		decoded[0] = new_sample&0xFF;
		new_sample >>= 8;
		decoded[1] = new_sample&0xFF;
		decoded += 2 * numchannels;

		++encoded;
	}
}

static int IMA_ADPCM_decode(Uint8 **audio_buf, Uint32 *audio_len)
{
	struct IMA_ADPCM_decodestate *state;
	Uint8 *freeable, *encoded, *decoded;
	Sint32 encoded_len, samplesleft;
	unsigned int c, channels;

	/* Check to make sure we have enough variables in the state array */
	channels = IMA_ADPCM_state.wavefmt.channels;
	if ( channels > SDL_arraysize(IMA_ADPCM_state.state) ) {
		SDL_SetError("IMA ADPCM decoder can only handle %d channels",
					SDL_arraysize(IMA_ADPCM_state.state));
		return(-1);
	}
	state = IMA_ADPCM_state.state;

	/* Allocate the proper sized output buffer */
	encoded_len = *audio_len;
	encoded = *audio_buf;
	freeable = *audio_buf;
	*audio_len = (encoded_len/IMA_ADPCM_state.wavefmt.blockalign) * 
				IMA_ADPCM_state.wSamplesPerBlock*
				IMA_ADPCM_state.wavefmt.channels*sizeof(Sint16);
	*audio_buf = (Uint8 *)SDL_malloc(*audio_len);
	if ( *audio_buf == NULL ) {
		SDL_Error(SDL_ENOMEM);
		return(-1);
	}
	decoded = *audio_buf;

	/* Get ready... Go! */
	while ( encoded_len >= IMA_ADPCM_state.wavefmt.blockalign ) {
		/* Grab the initial information for this block */
		for ( c=0; c<channels; ++c ) {
			/* Fill the state information for this block */
			state[c].sample = ((encoded[1]<<8)|encoded[0]);
			encoded += 2;
			if ( state[c].sample & 0x8000 ) {
				state[c].sample -= 0x10000;
			}
			state[c].index = *encoded++;
			/* Reserved byte in buffer header, should be 0 */
			if ( *encoded++ != 0 ) {
				/* Uh oh, corrupt data?  Buggy code? */;
			}

			/* Store the initial sample we start with */
			decoded[0] = (Uint8)(state[c].sample&0xFF);
			decoded[1] = (Uint8)(state[c].sample>>8);
			decoded += 2;
		}

		/* Decode and store the other samples in this block */
		samplesleft = (IMA_ADPCM_state.wSamplesPerBlock-1)*channels;
		while ( samplesleft > 0 ) {
			for ( c=0; c<channels; ++c ) {
				Fill_IMA_ADPCM_block(decoded, encoded,
						c, channels, &state[c]);
				encoded += 4;
				samplesleft -= 8;
			}
			decoded += (channels * 8 * 2);
		}
		encoded_len -= IMA_ADPCM_state.wavefmt.blockalign;
	}
	SDL_free(freeable);
	return(0);
}

SDL_AudioSpec * SDL_LoadWAV_RW (SDL_RWops *src, int freesrc,
		SDL_AudioSpec *spec, Uint8 **audio_buf, Uint32 *audio_len)
{
	int was_error;
	Chunk chunk;
	int lenread;
	int MS_ADPCM_encoded, IMA_ADPCM_encoded;
	int samplesize;

	/* WAV magic header */
	Uint32 RIFFchunk;
	Uint32 wavelen = 0;
	Uint32 WAVEmagic;
	Uint32 headerDiff = 0;

	/* FMT chunk */
	WaveFMT *format = NULL;

	/* Make sure we are passed a valid data source */
	was_error = 0;
	if ( src == NULL ) {
		was_error = 1;
		goto done;
	}
		
	/* Check the magic header */
	RIFFchunk	= SDL_ReadLE32(src);
	wavelen		= SDL_ReadLE32(src);
	if ( wavelen == WAVE ) { /* The RIFFchunk has already been read */
		WAVEmagic = wavelen;
		wavelen   = RIFFchunk;
		RIFFchunk = RIFF;
	} else {
		WAVEmagic = SDL_ReadLE32(src);
	}
	if ( (RIFFchunk != RIFF) || (WAVEmagic != WAVE) ) {
		SDL_SetError("Unrecognized file type (not WAVE)");
		was_error = 1;
		goto done;
	}
	headerDiff += sizeof(Uint32); /* for WAVE */

	/* Read the audio data format chunk */
	chunk.data = NULL;
	do {
		if ( chunk.data != NULL ) {
			SDL_free(chunk.data);
		}
		lenread = ReadChunk(src, &chunk);
		if ( lenread < 0 ) {
			was_error = 1;
			goto done;
		}
		/* 2 Uint32's for chunk header+len, plus the lenread */
		headerDiff += lenread + 2 * sizeof(Uint32);
	} while ( (chunk.magic == FACT) || (chunk.magic == LIST) );

	/* Decode the audio data format */
	format = (WaveFMT *)chunk.data;
	if ( chunk.magic != FMT ) {
		SDL_SetError("Complex WAVE files not supported");
		was_error = 1;
		goto done;
	}
	MS_ADPCM_encoded = IMA_ADPCM_encoded = 0;
	switch (SDL_SwapLE16(format->encoding)) {
		case PCM_CODE:
			/* We can understand this */
			break;
		case MS_ADPCM_CODE:
			/* Try to understand this */
			if ( InitMS_ADPCM(format) < 0 ) {
				was_error = 1;
				goto done;
			}
			MS_ADPCM_encoded = 1;
			break;
		case IMA_ADPCM_CODE:
			/* Try to understand this */
			if ( InitIMA_ADPCM(format) < 0 ) {
				was_error = 1;
				goto done;
			}
			IMA_ADPCM_encoded = 1;
			break;
		case MP3_CODE:
			SDL_SetError("MPEG Layer 3 data not supported",
					SDL_SwapLE16(format->encoding));
			was_error = 1;
			goto done;
		default:
			SDL_SetError("Unknown WAVE data format: 0x%.4x",
					SDL_SwapLE16(format->encoding));
			was_error = 1;
			goto done;
	}
	SDL_memset(spec, 0, (sizeof *spec));
	spec->freq = SDL_SwapLE32(format->frequency);
	switch (SDL_SwapLE16(format->bitspersample)) {
		case 4:
			if ( MS_ADPCM_encoded || IMA_ADPCM_encoded ) {
				spec->format = AUDIO_S16;
			} else {
				was_error = 1;
			}
			break;
		case 8:
			spec->format = AUDIO_U8;
			break;
		case 16:
			spec->format = AUDIO_S16;
			break;
		default:
			was_error = 1;
			break;
	}
	if ( was_error ) {
		SDL_SetError("Unknown %d-bit PCM data format",
			SDL_SwapLE16(format->bitspersample));
		goto done;
	}
	spec->channels = (Uint8)SDL_SwapLE16(format->channels);
	spec->samples = 4096;		/* Good default buffer size */

	/* Read the audio data chunk */
	*audio_buf = NULL;
	do {
		if ( *audio_buf != NULL ) {
			SDL_free(*audio_buf);
		}
		lenread = ReadChunk(src, &chunk);
		if ( lenread < 0 ) {
			was_error = 1;
			goto done;
		}
		*audio_len = lenread;
		*audio_buf = chunk.data;
		if(chunk.magic != DATA) headerDiff += lenread + 2 * sizeof(Uint32);
	} while ( chunk.magic != DATA );
	headerDiff += 2 * sizeof(Uint32); /* for the data chunk and len */

	if ( MS_ADPCM_encoded ) {
		if ( MS_ADPCM_decode(audio_buf, audio_len) < 0 ) {
			was_error = 1;
			goto done;
		}
	}
	if ( IMA_ADPCM_encoded ) {
		if ( IMA_ADPCM_decode(audio_buf, audio_len) < 0 ) {
			was_error = 1;
			goto done;
		}
	}

	/* Don't return a buffer that isn't a multiple of samplesize */
	samplesize = ((spec->format & 0xFF)/8)*spec->channels;
	*audio_len &= ~(samplesize-1);

done:
	if ( format != NULL ) {
		SDL_free(format);
	}
	if ( src ) {
		if ( freesrc ) {
			SDL_RWclose(src);
		} else {
			/* seek to the end of the file (given by the RIFF chunk) */
			SDL_RWseek(src, wavelen - chunk.length - headerDiff, RW_SEEK_CUR);
		}
	}
	if ( was_error ) {
		spec = NULL;
	}
	return(spec);
}

/* Since the WAV memory is allocated in the shared library, it must also
   be freed here.  (Necessary under Win32, VC++)
 */
void SDL_FreeWAV(Uint8 *audio_buf)
{
	if ( audio_buf != NULL ) {
		SDL_free(audio_buf);
	}
}

static int ReadChunk(SDL_RWops *src, Chunk *chunk)
{
	chunk->magic	= SDL_ReadLE32(src);
	chunk->length	= SDL_ReadLE32(src);
	chunk->data = (Uint8 *)SDL_malloc(chunk->length);
	if ( chunk->data == NULL ) {
		SDL_Error(SDL_ENOMEM);
		return(-1);
	}
	if ( SDL_RWread(src, chunk->data, chunk->length, 1) != 1 ) {
		SDL_Error(SDL_EFREAD);
		SDL_free(chunk->data);
		return(-1);
	}
	return(chunk->length);
}