Mercurial > sdl-ios-xcode
view src/video/SDL_rect.c @ 3335:b8d313de8a65
Adam Strzelecki to SDL
Since current DirectFB implementation is incomplete for YUV surfaces (actually causes segmentation faults when trying Lock and use YUV planar textures) I decided to fix it a bit.
Here's a patch that should make DirectFB properly support YUV both packed and planar (3 planes).
(1) Removed SDL_BYTESPERPIXEL at all in favor of DFB_BYTES_PER_PIXEL(SDLToDFBPixelFormat(fmt)) which does return always proper BPP for YUVs too, coz SDL_BYTESPERPIXEL returns incorrect values for FOURCCs
(2) Fixed data->pixels allocation for planar YUVs in CreateTexture, it should allocate 150% more space
(3) Copy other planes for planar YUVs in UpdateTexture
(4) Moved checking if format is supported at all with DirectFB on CreateTexture at the beginning of the code
Waiting for comments,
--
Adam Strzelecki | nanoant.com
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 04 Oct 2009 04:03:37 +0000 |
parents | 47965eacde88 |
children | 0267b8b1595c |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2009 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Sam Lantinga slouken@libsdl.org */ #include "SDL_config.h" #include "SDL_video.h" #include "SDL_rect_c.h" SDL_bool SDL_HasIntersection(const SDL_Rect * A, const SDL_Rect * B) { int Amin, Amax, Bmin, Bmax; /* Horizontal intersection */ Amin = A->x; Amax = Amin + A->w; Bmin = B->x; Bmax = Bmin + B->w; if (Bmin > Amin) Amin = Bmin; if (Bmax < Amax) Amax = Bmax; if (Amax <= Amin) return SDL_FALSE; /* Vertical intersection */ Amin = A->y; Amax = Amin + A->h; Bmin = B->y; Bmax = Bmin + B->h; if (Bmin > Amin) Amin = Bmin; if (Bmax < Amax) Amax = Bmax; if (Amax <= Amin) return SDL_FALSE; return SDL_TRUE; } SDL_bool SDL_IntersectRect(const SDL_Rect * A, const SDL_Rect * B, SDL_Rect * result) { int Amin, Amax, Bmin, Bmax; /* Horizontal intersection */ Amin = A->x; Amax = Amin + A->w; Bmin = B->x; Bmax = Bmin + B->w; if (Bmin > Amin) Amin = Bmin; result->x = Amin; if (Bmax < Amax) Amax = Bmax; result->w = Amax - Amin; /* Vertical intersection */ Amin = A->y; Amax = Amin + A->h; Bmin = B->y; Bmax = Bmin + B->h; if (Bmin > Amin) Amin = Bmin; result->y = Amin; if (Bmax < Amax) Amax = Bmax; result->h = Amax - Amin; return !SDL_RectEmpty(result); } void SDL_UnionRect(const SDL_Rect * A, const SDL_Rect * B, SDL_Rect * result) { int Amin, Amax, Bmin, Bmax; /* Horizontal union */ Amin = A->x; Amax = Amin + A->w; Bmin = B->x; Bmax = Bmin + B->w; if (Bmin < Amin) Amin = Bmin; result->x = Amin; if (Bmax > Amax) Amax = Bmax; result->w = Amax - Amin; /* Vertical intersection */ Amin = A->y; Amax = Amin + A->h; Bmin = B->y; Bmax = Bmin + B->h; if (Bmin < Amin) Amin = Bmin; result->y = Amin; if (Bmax > Amax) Amax = Bmax; result->h = Amax - Amin; } SDL_bool SDL_IntersectRectAndLine(const SDL_Rect * rect, int *X1, int *Y1, int *X2, int *Y2) { int x1, y1; int x2, y2; int rectx1; int recty1; int rectx2; int recty2; if (!rect || !X1 || !Y1 || !X2 || !Y2) { return SDL_FALSE; } x1 = *X1; y1 = *Y1; x2 = *X2; y2 = *Y2; rectx1 = rect->x; recty1 = rect->y; rectx2 = rect->x + rect->w - 1; recty2 = rect->y + rect->h - 1; /* Check to see if entire line is inside rect */ if (x1 >= rectx1 && x1 <= rectx2 && x2 >= rectx1 && x2 <= rectx2 && y1 >= recty1 && y1 <= recty2 && y2 >= recty1 && y2 <= recty2) { return SDL_TRUE; } /* Check to see if entire line is to one side of rect */ if ((x1 < rectx1 && x2 < rectx1) || (x1 > rectx2 && x2 > rectx2) || (y1 < recty1 && y2 < recty1) || (y1 > recty2 && y2 > recty2)) { return SDL_FALSE; } if (y1 == y2) { /* Horizontal line, easy to clip */ if (x1 < rectx1) { *X1 = rectx1; } else if (x1 > rectx2) { *X1 = rectx2; } if (x2 < rectx1) { *X2 = rectx1; } else if (x2 > rectx2) { *X2 = rectx2; } return SDL_TRUE; } if (x1 == x2) { /* Vertical line, easy to clip */ if (y1 < recty1) { *Y1 = recty1; } else if (y1 > recty2) { *Y1 = recty2; } if (y2 < recty1) { *Y2 = recty1; } else if (y2 > recty2) { *Y2 = recty2; } return SDL_TRUE; } else { /* The task of clipping a line with finite slope ratios in a fixed- * precision coordinate space is not as immediately simple as it is * with coordinates of arbitrary precision. If the ratio of slopes * between the input line segment and the result line segment is not * a whole number, you have in fact *moved* the line segment a bit, * and there can be no avoiding it without more precision */ int *x_result_[] = { X1, X2, NULL }, **x_result = x_result_; int *y_result_[] = { Y1, Y2, NULL }, **y_result = y_result_; SDL_bool intersection = SDL_FALSE; double b, m, left, right, bottom, top; int xl, xh, yl, yh; /* solve mx+b line formula */ m = (double) (y1 - y2) / (double) (x1 - x2); b = y2 - m * (double) x2; /* find some linear intersections */ left = (m * (double) rectx1) + b; right = (m * (double) rectx2) + b; top = (recty1 - b) / m; bottom = (recty2 - b) / m; /* sort end-points' x and y components individually */ if (x1 < x2) { xl = x1; xh = x2; } else { xl = x2; xh = x1; } if (y1 < y2) { yl = y1; yh = y2; } else { yl = y2; yh = y1; } #define RISING(a, b, c) (((a)<=(b))&&((b)<=(c))) /* check for a point that's entirely inside the rect */ if (RISING(rectx1, x1, rectx2) && RISING(recty1, y1, recty2)) { x_result++; y_result++; intersection = SDL_TRUE; } else /* it was determined earlier that *both* end-points are not contained */ if (RISING(rectx1, x2, rectx2) && RISING(recty1, y2, recty2)) { **(x_result++) = x2; **(y_result++) = y2; intersection = SDL_TRUE; } if (RISING(recty1, left, recty2) && RISING(xl, rectx1, xh)) { **(x_result++) = rectx1; **(y_result++) = (int) left; intersection = SDL_TRUE; } if (*x_result == NULL) return intersection; if (RISING(recty1, right, recty2) && RISING(xl, rectx2, xh)) { **(x_result++) = rectx2; **(y_result++) = (int) right; intersection = SDL_TRUE; } if (*x_result == NULL) return intersection; if (RISING(rectx1, top, rectx2) && RISING(yl, recty1, yh)) { **(x_result++) = (int) top; **(y_result++) = recty1; intersection = SDL_TRUE; } if (*x_result == NULL) return intersection; if (RISING(rectx1, bottom, rectx2) && RISING(yl, recty2, yh)) { **(x_result++) = (int) bottom; **(y_result++) = recty2; intersection = SDL_TRUE; } return intersection; } return SDL_FALSE; } void SDL_AddDirtyRect(SDL_DirtyRectList * list, const SDL_Rect * rect) { SDL_DirtyRect *dirty; /* FIXME: At what point is this optimization too expensive? */ for (dirty = list->list; dirty; dirty = dirty->next) { if (SDL_HasIntersection(&dirty->rect, rect)) { SDL_UnionRect(&dirty->rect, rect, &dirty->rect); return; } } if (list->free) { dirty = list->free; list->free = dirty->next; } else { dirty = (SDL_DirtyRect *) SDL_malloc(sizeof(*dirty)); if (!dirty) { return; } } dirty->rect = *rect; dirty->next = list->list; list->list = dirty; } void SDL_ClearDirtyRects(SDL_DirtyRectList * list) { SDL_DirtyRect *prev, *curr; /* Skip to the end of the free list */ prev = NULL; for (curr = list->free; curr; curr = curr->next) { prev = curr; } /* Add the list entries to the end */ if (prev) { prev->next = list->list; } else { list->free = list->list; } list->list = NULL; } void SDL_FreeDirtyRects(SDL_DirtyRectList * list) { while (list->list) { SDL_DirtyRect *elem = list->list; list->list = elem->next; SDL_free(elem); } while (list->free) { SDL_DirtyRect *elem = list->free; list->free = elem->next; SDL_free(elem); } } /* vi: set ts=4 sw=4 expandtab: */