Mercurial > sdl-ios-xcode
view src/thread/os2/SDL_syscond.c @ 1584:b786d9c15e42
Fixed bug #61
Date: Mon, 24 Feb 2003 13:35:11 +0800
From: "Leonidas"
Subject: [SDL] Re: Trigger mouse wheel event -- not in X-environment
I have looked into the codes for the IMPS/2 mouse wheel mode of fbcon driver.
But I found something weird.
Here's the original codes to set a mouse device into IMPS/2 mode in libSDL.
In the file src/video/fbcon/SDL_fbevents.c
In function static int set_imps2_mode(int fd)
...
Uint8 set_imps2[] = {0xf3, 200, 0xf3, 100, 0xf3, 80};
Uint8 reset = 0xff;
fd_set fdset;
struct timeval tv;
int retval = 0;
// Set mouse device fd into IMPS/2 mode
if ( write(fd, &set_imps2, sizeof(set_imps2)) == sizeof(set_imps2) ) {
// ??? then RESET it..???
if (write(fd, &reset, sizeof (reset)) == sizeof (reset) ) {
retval = 1;
}
}
...........
Since it sets IMPS/2 mode then reset it, so you will never get a mouse into
IMPS/2 mode to use its wheel.
What I did to make the wheel usable is remove the RESET codes.
....
if ( write(fd, &set_imps2, sizeof(set_imps2)) == sizeof(set_imps2) ) {
/*
if (write(fd, &reset, sizeof (reset)) == sizeof (reset) ) {
}
*/
retval = 1;
}
....
And in FB_OpenMouse(_THIS)
Make the device /dev/psaux to be setted into imps2 mode such that it can be
detected its a imps/2 mouse or not.
(my mouse device is on ps2, but the codes only set /dev/input/mice device
originally)
Then I have done, I can use the mouse wheel when SDL uses frame buff driver.
I dont exactly know I did right or wrong, I just change it for my usuage.
Correct me please, if I did something wrong.
Best regards,
Li Tsung Lin
IAP Product Dept. Engineer
EeRise Corp. (Image Processing System, Computer Vision System)
Hsin Tien, Taipei Hsien, Taiwan, R.O.C.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Wed, 22 Mar 2006 07:22:40 +0000 |
parents | d910939febfa |
children | 782fd950bd46 c121d94672cb a1b03ba2fcd0 |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2006 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Sam Lantinga slouken@libsdl.org */ #include "SDL_config.h" /* An implementation of condition variables using semaphores and mutexes */ /* This implementation borrows heavily from the BeOS condition variable implementation, written by Christopher Tate and Owen Smith. Thanks! */ #include "SDL_thread.h" struct SDL_cond { SDL_mutex *lock; int waiting; int signals; SDL_sem *wait_sem; SDL_sem *wait_done; }; /* Create a condition variable */ DECLSPEC SDL_cond * SDLCALL SDL_CreateCond(void) { SDL_cond *cond; cond = (SDL_cond *) SDL_malloc(sizeof(SDL_cond)); if ( cond ) { cond->lock = SDL_CreateMutex(); cond->wait_sem = SDL_CreateSemaphore(0); cond->wait_done = SDL_CreateSemaphore(0); cond->waiting = cond->signals = 0; if ( ! cond->lock || ! cond->wait_sem || ! cond->wait_done ) { SDL_DestroyCond(cond); cond = NULL; } } else { SDL_OutOfMemory(); } return(cond); } /* Destroy a condition variable */ DECLSPEC void SDLCALL SDL_DestroyCond(SDL_cond *cond) { if ( cond ) { if ( cond->wait_sem ) { SDL_DestroySemaphore(cond->wait_sem); } if ( cond->wait_done ) { SDL_DestroySemaphore(cond->wait_done); } if ( cond->lock ) { SDL_DestroyMutex(cond->lock); } SDL_free(cond); } } /* Restart one of the threads that are waiting on the condition variable */ DECLSPEC int SDLCALL SDL_CondSignal(SDL_cond *cond) { if ( ! cond ) { SDL_SetError("Passed a NULL condition variable"); return -1; } /* If there are waiting threads not already signalled, then signal the condition and wait for the thread to respond. */ SDL_LockMutex(cond->lock); if ( cond->waiting > cond->signals ) { ++cond->signals; SDL_SemPost(cond->wait_sem); SDL_UnlockMutex(cond->lock); SDL_SemWait(cond->wait_done); } else { SDL_UnlockMutex(cond->lock); } return 0; } /* Restart all threads that are waiting on the condition variable */ DECLSPEC int SDLCALL SDL_CondBroadcast(SDL_cond *cond) { if ( ! cond ) { SDL_SetError("Passed a NULL condition variable"); return -1; } /* If there are waiting threads not already signalled, then signal the condition and wait for the thread to respond. */ SDL_LockMutex(cond->lock); if ( cond->waiting > cond->signals ) { int i, num_waiting; num_waiting = (cond->waiting - cond->signals); cond->signals = cond->waiting; for ( i=0; i<num_waiting; ++i ) { SDL_SemPost(cond->wait_sem); } /* Now all released threads are blocked here, waiting for us. Collect them all (and win fabulous prizes!) :-) */ SDL_UnlockMutex(cond->lock); for ( i=0; i<num_waiting; ++i ) { SDL_SemWait(cond->wait_done); } } else { SDL_UnlockMutex(cond->lock); } return 0; } /* Wait on the condition variable for at most 'ms' milliseconds. The mutex must be locked before entering this function! The mutex is unlocked during the wait, and locked again after the wait. Typical use: Thread A: SDL_LockMutex(lock); while ( ! condition ) { SDL_CondWait(cond); } SDL_UnlockMutex(lock); Thread B: SDL_LockMutex(lock); ... condition = true; ... SDL_UnlockMutex(lock); */ DECLSPEC int SDLCALL SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms) { int retval; if ( ! cond ) { SDL_SetError("Passed a NULL condition variable"); return -1; } /* Obtain the protection mutex, and increment the number of waiters. This allows the signal mechanism to only perform a signal if there are waiting threads. */ SDL_LockMutex(cond->lock); ++cond->waiting; SDL_UnlockMutex(cond->lock); /* Unlock the mutex, as is required by condition variable semantics */ SDL_UnlockMutex(mutex); /* Wait for a signal */ if ( ms == SDL_MUTEX_MAXWAIT ) { retval = SDL_SemWait(cond->wait_sem); } else { retval = SDL_SemWaitTimeout(cond->wait_sem, ms); } /* Let the signaler know we have completed the wait, otherwise the signaler can race ahead and get the condition semaphore if we are stopped between the mutex unlock and semaphore wait, giving a deadlock. See the following URL for details: http://www-classic.be.com/aboutbe/benewsletter/volume_III/Issue40.html */ SDL_LockMutex(cond->lock); if ( cond->signals > 0 ) { /* If we timed out, we need to eat a condition signal */ if ( retval > 0 ) { SDL_SemWait(cond->wait_sem); } /* We always notify the signal thread that we are done */ SDL_SemPost(cond->wait_done); /* Signal handshake complete */ --cond->signals; } --cond->waiting; SDL_UnlockMutex(cond->lock); /* Lock the mutex, as is required by condition variable semantics */ SDL_LockMutex(mutex); return retval; } /* Wait on the condition variable forever */ DECLSPEC int SDLCALL SDL_CondWait(SDL_cond *cond, SDL_mutex *mutex) { return SDL_CondWaitTimeout(cond, mutex, SDL_MUTEX_MAXWAIT); }