view docs/man3/SDL_SetAlpha.3 @ 638:b0108e9dea53

Date: Sun, 11 May 2003 19:59:06 +0300 From: Pasi K?rkk?inen Subject: [PATCH] fix SDL OpenGL segfault with DRI/Mesa drivers and Glew Hello! The attached patch fixes a bug in SDL which causes SDL to crash in X11_GL_Shutdown() if you are using DRI/Mesa drivers AND glew (http://glew.sf.net). The bug is caused by a namespace collision affecting dlsym() to fetch wrong pointer for glXReleaseBuffersMESA() (uninitialized pointer from glew because the extension is NOT supported by the driver) and then SDL calling it in X11_GL_Shutdown(). SDL should check if the glXReleaseBuffersMESA() is really supported by the driver (from the extensions string) before calling it. Attached patch adds extension string parsing to check if glXReleaseBuffersMESA() is really supported (and this way prevents the segfault). Availability of the extensions should be _always_ checked from the extensions string rather than using dlsym()! Please add it to the next version of SDL. Thanks to gltron and author of glew to help fixing this.
author Sam Lantinga <slouken@libsdl.org>
date Sat, 28 Jun 2003 17:27:33 +0000
parents e5bc29de3f0a
children 546f7c1eb755
line wrap: on
line source

.TH "SDL_SetAlpha" "3" "Tue 11 Sep 2001, 23:01" "SDL" "SDL API Reference" 
.SH "NAME"
SDL_SetAlpha\- Adjust the alpha properties of a surface
.SH "SYNOPSIS"
.PP
\fB#include "SDL\&.h"
.sp
\fBint \fBSDL_SetAlpha\fP\fR(\fBSDL_Surface *surface, Uint32 flag, Uint8 alpha\fR);
.SH "DESCRIPTION"
.PP
.RS
\fBNote:  
.PP
This function and the semantics of SDL alpha blending have changed since version 1\&.1\&.4\&. Up until version 1\&.1\&.5, an alpha value of 0 was considered opaque and a value of 255 was considered transparent\&. This has now been inverted: 0 (\fBSDL_ALPHA_TRANSPARENT\fP) is now considered transparent and 255 (\fBSDL_ALPHA_OPAQUE\fP) is now considered opaque\&.
.RE
.PP
\fBSDL_SetAlpha\fP is used for setting the per-surface alpha value and/or enabling and disabling alpha blending\&.
.PP
The\fBsurface\fR parameter specifies which surface whose alpha attributes you wish to adjust\&. \fBflags\fR is used to specify whether alpha blending should be used (\fBSDL_SRCALPHA\fP) and whether the surface should use RLE acceleration for blitting (\fBSDL_RLEACCEL\fP)\&. \fBflags\fR can be an OR\&'d combination of these two options, one of these options or 0\&. If \fBSDL_SRCALPHA\fP is not passed as a flag then all alpha information is ignored when blitting the surface\&. The \fBalpha\fR parameter is the per-surface alpha value; a surface need not have an alpha channel to use per-surface alpha and blitting can still be accelerated with \fBSDL_RLEACCEL\fP\&.
.PP
.RS
\fBNote:  
.PP
The per-surface alpha value of 128 is considered a special case and is optimised, so it\&'s much faster than other per-surface values\&.
.RE
.PP
Alpha effects surface blitting in the following ways:
.TP 20
RGBA->RGB with \fBSDL_SRCALPHA\fP
The source is alpha-blended with the destination, using the alpha channel\&. \fBSDL_SRCCOLORKEY\fP and the per-surface alpha are ignored\&.
.TP 20
RGBA->RGB without \fBSDL_SRCALPHA\fP
The RGB data is copied from the source\&. The source alpha channel and the per-surface alpha value are ignored\&.
.TP 20
RGB->RGBA with \fBSDL_SRCALPHA\fP
The source is alpha-blended with the destination using the per-surface alpha value\&. If \fBSDL_SRCCOLORKEY\fP is set, only the pixels not matching the colorkey value are copied\&. The alpha channel of the copied pixels is set to opaque\&.
.TP 20
RGB->RGBA without \fBSDL_SRCALPHA\fP
The RGB data is copied from the source and the alpha value of the copied pixels is set to opaque\&. If \fBSDL_SRCCOLORKEY\fP is set, only the pixels not matching the colorkey value are copied\&. 
.TP 20
RGBA->RGBA with \fBSDL_SRCALPHA\fP
The source is alpha-blended with the destination using the source alpha channel\&. The alpha channel in the destination surface is left untouched\&. \fBSDL_SRCCOLORKEY\fP is ignored\&.
.TP 20
RGBA->RGBA without \fBSDL_SRCALPHA\fP
The RGBA data is copied to the destination surface\&. If \fBSDL_SRCCOLORKEY\fP is set, only the pixels not matching the colorkey value are copied\&.
.TP 20
RGB->RGB with \fBSDL_SRCALPHA\fP
The source is alpha-blended with the destination using the per-surface alpha value\&. If \fBSDL_SRCCOLORKEY\fP is set, only the pixels not matching the colorkey value are copied\&.
.TP 20
RGB->RGB without \fBSDL_SRCALPHA\fP
The RGB data is copied from the source\&. If \fBSDL_SRCCOLORKEY\fP is set, only the pixels not matching the colorkey value are copied\&.
.PP
.RS
\fBNote:  
.PP
 Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the destination surface\&. This means that you cannot compose two arbitrary RGBA surfaces this way and get the result you would expect from "overlaying" them; the destination alpha will work as a mask\&.
.PP
Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always used if available
.RE
.SH "RETURN VALUE"
.PP
This function returns \fB0\fR, or \fB-1\fR if there was an error\&.
.SH "SEE ALSO"
.PP
\fI\fBSDL_MapRGBA\fP\fR, \fI\fBSDL_GetRGBA\fP\fR, \fI\fBSDL_DisplayFormatAlpha\fP\fR, \fI\fBSDL_BlitSurface\fP\fR
...\" created by instant / docbook-to-man, Tue 11 Sep 2001, 23:01