view src/video/e_pow.h @ 2519:af9df9662807 gsoc2008_force_feedback

More explicit with iterations and length. Added spherical coordinates (not available on linux).
author Edgar Simo <bobbens@gmail.com>
date Tue, 15 Jul 2008 15:53:48 +0000
parents c121d94672cb
children edd2839b36f7
line wrap: on
line source

/* @(#)e_pow.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
#endif

/* __ieee754_pow(x,y) return x**y
 *
 *		      n
 * Method:  Let x =  2   * (1+f)
 *	1. Compute and return log2(x) in two pieces:
 *		log2(x) = w1 + w2,
 *	   where w1 has 53-24 = 29 bit trailing zeros.
 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 *	   arithmetic, where |y'|<=0.5.
 *	3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *	1.  (anything) ** 0  is 1
 *	2.  (anything) ** 1  is itself
 *	3.  (anything) ** NAN is NAN
 *	4.  NAN ** (anything except 0) is NAN
 *	5.  +-(|x| > 1) **  +INF is +INF
 *	6.  +-(|x| > 1) **  -INF is +0
 *	7.  +-(|x| < 1) **  +INF is +0
 *	8.  +-(|x| < 1) **  -INF is +INF
 *	9.  +-1         ** +-INF is NAN
 *	10. +0 ** (+anything except 0, NAN)               is +0
 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *	12. +0 ** (-anything except 0, NAN)               is +INF
 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *	15. +INF ** (+anything except 0,NAN) is +INF
 *	16. +INF ** (-anything except 0,NAN) is +0
 *	17. -INF ** (anything)  = -0 ** (-anything)
 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *	pow(x,y) returns x**y nearly rounded. In particular
 *			pow(integer,integer)
 *	always returns the correct integer provided it is
 *	representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

/*#include "math.h"*/
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
  bp[] = { 1.0, 1.5, }, dp_h[] = {
0.0, 5.84962487220764160156e-01,},      /* 0x3FE2B803, 0x40000000 */

    dp_l[] = {
0.0, 1.35003920212974897128e-08,},      /* 0x3E4CFDEB, 0x43CFD006 */

    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
    L1 = 5.99999999999994648725e-01,    /* 0x3FE33333, 0x33333303 */
    L2 = 4.28571428578550184252e-01,    /* 0x3FDB6DB6, 0xDB6FABFF */
    L3 = 3.33333329818377432918e-01,    /* 0x3FD55555, 0x518F264D */
    L4 = 2.72728123808534006489e-01,    /* 0x3FD17460, 0xA91D4101 */
    L5 = 2.30660745775561754067e-01,    /* 0x3FCD864A, 0x93C9DB65 */
    L6 = 2.06975017800338417784e-01,    /* 0x3FCA7E28, 0x4A454EEF */
    P1 = 1.66666666666666019037e-01,    /* 0x3FC55555, 0x5555553E */
    P2 = -2.77777777770155933842e-03,   /* 0xBF66C16C, 0x16BEBD93 */
    P3 = 6.61375632143793436117e-05,    /* 0x3F11566A, 0xAF25DE2C */
    P4 = -1.65339022054652515390e-06,   /* 0xBEBBBD41, 0xC5D26BF1 */
    P5 = 4.13813679705723846039e-08,    /* 0x3E663769, 0x72BEA4D0 */
    lg2 = 6.93147180559945286227e-01,   /* 0x3FE62E42, 0xFEFA39EF */
    lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
    lg2_l = -1.90465429995776804525e-09,        /* 0xBE205C61, 0x0CA86C39 */
    ovt = 8.0085662595372944372e-0017,  /* -(1024-log2(ovfl+.5ulp)) */
    cp = 9.61796693925975554329e-01,    /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
    cp_h = 9.61796700954437255859e-01,  /* 0x3FEEC709, 0xE0000000 =(float)cp */
    cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
    ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
    ivln2_h = 1.44269502162933349609e+00,       /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
    ivln2_l = 1.92596299112661746887e-08;       /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */

#ifdef __STDC__
double
__ieee754_pow(double x, double y)
#else
double
__ieee754_pow(x, y)
     double x, y;
#endif
{
    double z, ax, z_h, z_l, p_h, p_l;
    double y1, t1, t2, r, s, t, u, v, w;
    int32_t i, j, k, yisint, n;
    int32_t hx, hy, ix, iy;
    u_int32_t lx, ly;

    EXTRACT_WORDS(hx, lx, x);
    EXTRACT_WORDS(hy, ly, y);
    ix = hx & 0x7fffffff;
    iy = hy & 0x7fffffff;

    /* y==zero: x**0 = 1 */
    if ((iy | ly) == 0)
        return one;

    /* +-NaN return x+y */
    if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
        iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
        return x + y;

    /* determine if y is an odd int when x < 0
     * yisint = 0       ... y is not an integer
     * yisint = 1       ... y is an odd int
     * yisint = 2       ... y is an even int
     */
    yisint = 0;
    if (hx < 0) {
        if (iy >= 0x43400000)
            yisint = 2;         /* even integer y */
        else if (iy >= 0x3ff00000) {
            k = (iy >> 20) - 0x3ff;     /* exponent */
            if (k > 20) {
                j = ly >> (52 - k);
                if ((u_int32_t) (j << (52 - k)) == ly)
                    yisint = 2 - (j & 1);
            } else if (ly == 0) {
                j = iy >> (20 - k);
                if ((j << (20 - k)) == iy)
                    yisint = 2 - (j & 1);
            }
        }
    }

    /* special value of y */
    if (ly == 0) {
        if (iy == 0x7ff00000) { /* y is +-inf */
            if (((ix - 0x3ff00000) | lx) == 0)
                return y - y;   /* inf**+-1 is NaN */
            else if (ix >= 0x3ff00000)  /* (|x|>1)**+-inf = inf,0 */
                return (hy >= 0) ? y : zero;
            else                /* (|x|<1)**-,+inf = inf,0 */
                return (hy < 0) ? -y : zero;
        }
        if (iy == 0x3ff00000) { /* y is  +-1 */
            if (hy < 0)
                return one / x;
            else
                return x;
        }
        if (hy == 0x40000000)
            return x * x;       /* y is  2 */
        if (hy == 0x3fe00000) { /* y is  0.5 */
            if (hx >= 0)        /* x >= +0 */
                return __ieee754_sqrt(x);
        }
    }

    ax = x < 0 ? -x : x;        /*fabs(x); */
    /* special value of x */
    if (lx == 0) {
        if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
            z = ax;             /*x is +-0,+-inf,+-1 */
            if (hy < 0)
                z = one / z;    /* z = (1/|x|) */
            if (hx < 0) {
                if (((ix - 0x3ff00000) | yisint) == 0) {
                    z = (z - z) / (z - z);      /* (-1)**non-int is NaN */
                } else if (yisint == 1)
                    z = -z;     /* (x<0)**odd = -(|x|**odd) */
            }
            return z;
        }
    }

    /* (x<0)**(non-int) is NaN */
    if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
        return (x - x) / (x - x);

    /* |y| is huge */
    if (iy > 0x41e00000) {      /* if |y| > 2**31 */
        if (iy > 0x43f00000) {  /* if |y| > 2**64, must o/uflow */
            if (ix <= 0x3fefffff)
                return (hy < 0) ? huge * huge : tiny * tiny;
            if (ix >= 0x3ff00000)
                return (hy > 0) ? huge * huge : tiny * tiny;
        }
        /* over/underflow if x is not close to one */
        if (ix < 0x3fefffff)
            return (hy < 0) ? huge * huge : tiny * tiny;
        if (ix > 0x3ff00000)
            return (hy > 0) ? huge * huge : tiny * tiny;
        /* now |1-x| is tiny <= 2**-20, suffice to compute
           log(x) by x-x^2/2+x^3/3-x^4/4 */
        t = x - 1;              /* t has 20 trailing zeros */
        w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
        u = ivln2_h * t;        /* ivln2_h has 21 sig. bits */
        v = t * ivln2_l - w * ivln2;
        t1 = u + v;
        SET_LOW_WORD(t1, 0);
        t2 = v - (t1 - u);
    } else {
        double s2, s_h, s_l, t_h, t_l;
        n = 0;
        /* take care subnormal number */
        if (ix < 0x00100000) {
            ax *= two53;
            n -= 53;
            GET_HIGH_WORD(ix, ax);
        }
        n += ((ix) >> 20) - 0x3ff;
        j = ix & 0x000fffff;
        /* determine interval */
        ix = j | 0x3ff00000;    /* normalize ix */
        if (j <= 0x3988E)
            k = 0;              /* |x|<sqrt(3/2) */
        else if (j < 0xBB67A)
            k = 1;              /* |x|<sqrt(3)   */
        else {
            k = 0;
            n += 1;
            ix -= 0x00100000;
        }
        SET_HIGH_WORD(ax, ix);

        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
        u = ax - bp[k];         /* bp[0]=1.0, bp[1]=1.5 */
        v = one / (ax + bp[k]);
        s = u * v;
        s_h = s;
        SET_LOW_WORD(s_h, 0);
        /* t_h=ax+bp[k] High */
        t_h = zero;
        SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
        t_l = ax - (t_h - bp[k]);
        s_l = v * ((u - s_h * t_h) - s_h * t_l);
        /* compute log(ax) */
        s2 = s * s;
        r = s2 * s2 * (L1 +
                       s2 * (L2 +
                             s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
        r += s_l * (s_h + s);
        s2 = s_h * s_h;
        t_h = 3.0 + s2 + r;
        SET_LOW_WORD(t_h, 0);
        t_l = r - ((t_h - 3.0) - s2);
        /* u+v = s*(1+...) */
        u = s_h * t_h;
        v = s_l * t_h + t_l * s;
        /* 2/(3log2)*(s+...) */
        p_h = u + v;
        SET_LOW_WORD(p_h, 0);
        p_l = v - (p_h - u);
        z_h = cp_h * p_h;       /* cp_h+cp_l = 2/(3*log2) */
        z_l = cp_l * p_h + p_l * cp + dp_l[k];
        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
        t = (double) n;
        t1 = (((z_h + z_l) + dp_h[k]) + t);
        SET_LOW_WORD(t1, 0);
        t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
    }

    s = one;                    /* s (sign of result -ve**odd) = -1 else = 1 */
    if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
        s = -one;               /* (-ve)**(odd int) */

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    y1 = y;
    SET_LOW_WORD(y1, 0);
    p_l = (y - y1) * t1 + y * t2;
    p_h = y1 * t1;
    z = p_l + p_h;
    EXTRACT_WORDS(j, i, z);
    if (j >= 0x40900000) {      /* z >= 1024 */
        if (((j - 0x40900000) | i) != 0)        /* if z > 1024 */
            return s * huge * huge;     /* overflow */
        else {
            if (p_l + ovt > z - p_h)
                return s * huge * huge; /* overflow */
        }
    } else if ((j & 0x7fffffff) >= 0x4090cc00) {        /* z <= -1075 */
        if (((j - 0xc090cc00) | i) != 0)        /* z < -1075 */
            return s * tiny * tiny;     /* underflow */
        else {
            if (p_l <= z - p_h)
                return s * tiny * tiny; /* underflow */
        }
    }
    /*
     * compute 2**(p_h+p_l)
     */
    i = j & 0x7fffffff;
    k = (i >> 20) - 0x3ff;
    n = 0;
    if (i > 0x3fe00000) {       /* if |z| > 0.5, set n = [z+0.5] */
        n = j + (0x00100000 >> (k + 1));
        k = ((n & 0x7fffffff) >> 20) - 0x3ff;   /* new k for n */
        t = zero;
        SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
        if (j < 0)
            n = -n;
        p_h -= t;
    }
    t = p_l + p_h;
    SET_LOW_WORD(t, 0);
    u = t * lg2_h;
    v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
    z = u + v;
    w = v - (z - u);
    t = z * z;
    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
    r = (z * t1) / (t1 - two) - (w + z * w);
    z = one - (r - z);
    GET_HIGH_WORD(j, z);
    j += (n << 20);
    if ((j >> 20) <= 0)
        z = SDL_NAME(scalbn) (z, n);    /* subnormal output */
    else
        SET_HIGH_WORD(z, j);
    return s * z;
}

/* vi: set ts=4 sw=4 expandtab: */