Mercurial > sdl-ios-xcode
view src/video/qtopia/SDL_sysevents.cc @ 855:aa4ac9e65d92
I noticed MacOSX SDL sets up working directory to parent of executable.
On BeOS is should setup it the same way, but it only does when Tracker
wasn't restarted.
I checked code and it looks like a hack to me :(
It looks for env variable and than comapres it to default when OpenTracker
was started after boot, and wasn't restarted. That's probably ok, for that
exact case. Unfortunetly that variable isn't always like that. For
example, after Tracker crashes and is restarted, env variable most
probably is different (depends on how Tracker was restarted, by what
application, etc... for example: i have launcher application from which i
can restart Tracker, and after that nev variable points to that
application's directory, not Tracker's).
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Tue, 24 Feb 2004 18:58:40 +0000 |
parents | b8d311d90021 |
children | c9b51268668f |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2004 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Sam Lantinga slouken@libsdl.org */ #ifdef SAVE_RCSID static char rcsid = "@(#) $Id$"; #endif #include <qpe/qpeapplication.h> #include <stdio.h> #include <string.h> #include "SDL_error.h" #include "SDL_events.h" #include "SDL_QWin.h" #include "SDL_lowvideo.h" #include "SDL_timer.h" extern "C" { #include "SDL_events_c.h" #include "SDL_sysevents.h" #include "SDL_sysevents_c.h" // static SDLKey keymap[128]; /* This is special because we know it will be run in a loop in a separate thread. Normally this function should loop as long as there are input states changing, i.e. new events arriving. */ void QT_PumpEvents(_THIS) { if(!qApp) { return; } // printf("processing events: %p\n", qApp); //qApp->processOneEvent(); // wait for a event qApp->processEvents(); // and process all outstanding ones #if 0 BView *view; BRect bounds; BPoint point; uint32 buttons; const uint32 button_masks[3] = { B_PRIMARY_MOUSE_BUTTON, B_TERTIARY_MOUSE_BUTTON, B_SECONDARY_MOUSE_BUTTON, }; unsigned int i, j; /* Check out the mouse buttons and position (slight race condition) */ if ( SDL_Win->Lock() ) { /* Don't do anything if we have no view */ view = SDL_Win->View(); if ( ! view ) { SDL_Win->Unlock(); return; } bounds = view->Bounds(); /* Get new input state, if still active */ if ( SDL_Win->IsActive() ) { key_flip = !key_flip; get_key_info(&keyinfo[key_flip]); view->GetMouse(&point, &buttons, true); } else { key_flip = key_flip; point = last_point; buttons = last_buttons; } SDL_Win->Unlock(); } else { return; } /* If our view is active, we'll find key changes here */ if ( memcmp(keyinfo[0].key_states, keyinfo[1].key_states, 16) != 0 ) { for ( i=0; i<16; ++i ) { Uint8 new_state, transition; new_state = keyinfo[key_flip].key_states[i]; transition = keyinfo[!key_flip].key_states[i] ^ keyinfo[ key_flip].key_states[i]; for ( j=0; j<8; ++j ) { if ( transition&0x80 ) QueueKey(i*8+j, new_state&0x80); transition <<= 1; new_state <<= 1; } } } /* We check keyboard, but not mouse if mouse isn't in window */ if ( ! bounds.Contains(point) ) { /* Mouse moved outside our view? */ if ( SDL_GetAppState() & SDL_APPMOUSEFOCUS ) { SDL_PrivateAppActive(0, SDL_APPMOUSEFOCUS); be_app->SetCursor(B_HAND_CURSOR); } return; } /* Has the mouse moved back into our view? */ if ( ! (SDL_GetAppState() & SDL_APPMOUSEFOCUS) ) { /* Reset the B_HAND_CURSOR to our own */ SDL_PrivateAppActive(1, SDL_APPMOUSEFOCUS); SDL_SetCursor(NULL); } /* Check for mouse motion */ if ( point != last_point ) { int x, y; SDL_Win->GetXYOffset(x, y); x = (int)point.x - x; y = (int)point.y - y; SDL_PrivateMouseMotion(0, 0, x, y); } last_point = point; /* Add any mouse button events */ for ( i=0; i<SDL_TABLESIZE(button_masks); ++i ) { if ( (buttons ^ last_buttons) & button_masks[i] ) { if ( buttons & button_masks[i] ) { SDL_PrivateMouseButton(SDL_PRESSED, 1+i, 0, 0); } else { SDL_PrivateMouseButton(SDL_RELEASED, 1+i, 0, 0); } } } last_buttons = buttons; #endif } void QT_InitOSKeymap(_THIS) { #if 0 unsigned int i; /* Initialize all the key states as "up" */ key_flip = 0; memset(keyinfo[key_flip].key_states, 0, 16); /* Initialize the key translation table */ for ( i=0; i<SDL_TABLESIZE(keymap); ++i ) keymap[i] = SDLK_UNKNOWN; // keymap[0x01] = SDLK_ESCAPE; // keymap[B_F1_KEY] = SDLK_F1; // keymap[B_F2_KEY] = SDLK_F2; // keymap[B_F3_KEY] = SDLK_F3; // keymap[B_F4_KEY] = SDLK_F4; // keymap[B_F5_KEY] = SDLK_F5; // keymap[B_F6_KEY] = SDLK_F6; // keymap[B_F7_KEY] = SDLK_F7; // keymap[B_F8_KEY] = SDLK_F8; // keymap[B_F9_KEY] = SDLK_F9; // keymap[B_F10_KEY] = SDLK_F10; // keymap[B_F11_KEY] = SDLK_F11; // keymap[B_F12_KEY] = SDLK_F12; // keymap[B_PRINT_KEY] = SDLK_PRINT; //keymap[B_SCROLL_KEY] = SDLK_SCROLLOCK; // keymap[B_PAUSE_KEY] = SDLK_PAUSE; keymap[0x11] = SDLK_BACKQUOTE; keymap[0x12] = SDLK_1; keymap[0x13] = SDLK_2; keymap[0x14] = SDLK_3; keymap[0x15] = SDLK_4; keymap[0x16] = SDLK_5; keymap[0x17] = SDLK_6; keymap[0x18] = SDLK_7; keymap[0x19] = SDLK_8; keymap[0x1a] = SDLK_9; keymap[0x1b] = SDLK_0; keymap[0x1c] = SDLK_MINUS; keymap[0x1d] = SDLK_EQUALS; keymap[0x1e] = SDLK_BACKSPACE; keymap[0x1f] = SDLK_INSERT; keymap[0x20] = SDLK_HOME; keymap[0x21] = SDLK_PAGEUP; //keymap[0x22] = SDLK_NUMLOCK; keymap[0x23] = SDLK_KP_DIVIDE; keymap[0x24] = SDLK_KP_MULTIPLY; keymap[0x25] = SDLK_KP_MINUS; keymap[0x26] = SDLK_TAB; keymap[0x27] = SDLK_q; keymap[0x28] = SDLK_w; keymap[0x29] = SDLK_e; keymap[0x2a] = SDLK_r; keymap[0x2b] = SDLK_t; keymap[0x2c] = SDLK_y; keymap[0x2d] = SDLK_u; keymap[0x2e] = SDLK_i; keymap[0x2f] = SDLK_o; keymap[0x30] = SDLK_p; keymap[0x31] = SDLK_LEFTBRACKET; keymap[0x32] = SDLK_RIGHTBRACKET; keymap[0x33] = SDLK_BACKSLASH; keymap[0x34] = SDLK_DELETE; keymap[0x35] = SDLK_END; keymap[0x36] = SDLK_PAGEDOWN; keymap[0x37] = SDLK_KP7; keymap[0x38] = SDLK_KP8; keymap[0x39] = SDLK_KP9; keymap[0x3a] = SDLK_KP_PLUS; //keymap[0x3b] = SDLK_CAPSLOCK; keymap[0x3c] = SDLK_a; keymap[0x3d] = SDLK_s; keymap[0x3e] = SDLK_d; keymap[0x3f] = SDLK_f; keymap[0x40] = SDLK_g; keymap[0x41] = SDLK_h; keymap[0x42] = SDLK_j; keymap[0x43] = SDLK_k; keymap[0x44] = SDLK_l; keymap[0x45] = SDLK_SEMICOLON; keymap[0x46] = SDLK_QUOTE; keymap[0x47] = SDLK_RETURN; keymap[0x48] = SDLK_KP4; keymap[0x49] = SDLK_KP5; keymap[0x4a] = SDLK_KP6; keymap[0x4b] = SDLK_LSHIFT; keymap[0x4c] = SDLK_z; keymap[0x4d] = SDLK_x; keymap[0x4e] = SDLK_c; keymap[0x4f] = SDLK_v; keymap[0x50] = SDLK_b; keymap[0x51] = SDLK_n; keymap[0x52] = SDLK_m; keymap[0x53] = SDLK_COMMA; keymap[0x54] = SDLK_PERIOD; keymap[0x55] = SDLK_SLASH; keymap[0x56] = SDLK_RSHIFT; keymap[0x57] = SDLK_UP; keymap[0x58] = SDLK_KP1; keymap[0x59] = SDLK_KP2; keymap[0x5a] = SDLK_KP3; keymap[0x5b] = SDLK_KP_ENTER; //keymap[0x5c] = SDLK_LCTRL; //keymap[0x5d] = SDLK_LALT; keymap[0x5e] = SDLK_SPACE; //keymap[0x5f] = SDLK_RALT; //keymap[0x60] = SDLK_RCTRL; keymap[0x61] = SDLK_LEFT; keymap[0x62] = SDLK_DOWN; keymap[0x63] = SDLK_RIGHT; keymap[0x64] = SDLK_KP0; keymap[0x65] = SDLK_KP_PERIOD; //keymap[0x66] = SDLK_LMETA; //keymap[0x67] = SDLK_RMETA; //keymap[0x68] = SDLK_MENU; keymap[0x69] = SDLK_EURO; keymap[0x6a] = SDLK_KP_EQUALS; keymap[0x6b] = SDLK_POWER; #endif } }; /* Extern C */