Mercurial > sdl-ios-xcode
view src/video/math_private.h @ 4167:a6f635e5eaa6 SDL-1.2
Fixed bug #611
From Tim Angus 2008-08-12 11:18:06
I'm one of the maintainers of ioquake3.org, an updated version of the
Quake 3 engine. Relatively recently, we moved ioq3 to use SDL as a
replacement for 95% of the platform specific code that was there. On the
whole it's doing a great job but unfortunately since the move we've been
getting complaints about the quality of the mouse input on the Windows
platform to the point where for many the game is unplayable. Put in
other terms, the current stable SDL 1.2 is basically not fit for purpose
if you need high quality mouse input as you do in a first person shooter.
Over the weekend I decided to pull my finger out and actually figure out
what's going on. There are basically two major problems. Firstly, when
using the "windib" driver, mouse input is gathered via the WM_MOUSEMOVE
message. Googling for this indicates that often this is known to result
in "spurious" and/or "missing" mouse movement events; this is the
primary cause of the poor mouse input. The second problem is that the
"directx" driver does not work at all in combination with OpenGL meaning
that you can't use DirectInput if your application also uses OpenGL. In
other words you're locked into using the "windib" driver and its poor
mouse input.
In order to address these problems I've done the following:
* Remove WM_MOUSEMOVE based motion event generation and replace with
calls to GetCursorPos which seems much more reliable. In order to
achieve this I've moved mouse motion out into a separate function that
is called once per DIB_PumpEvents.
* Remove the restriction on the "directx" driver being inoperable in
combination with OpenGL. There is a bug for this issues that I've
hijacked to a certain extent
(http://bugzilla.libsdl.org/show_bug.cgi?id=265). I'm the first to admit
I don't really understand why this restriction is there in the first
place. The commit message for the bug fix that introduced this
restriction (r581) isn't very elaborate and I couldn't see any other bug
tracking the issue. If anyone has more information on the bug that was
avoided by r581 it would be helpful as I/someone could then look into
addressing the problem without disabling the "directx" driver.
* I've also removed the restriction on not being allowed to use
DirectInput in windowed mode. I couldn't see any reason for this, at
least not from our perspective. I have my suspicions that it'll be
something like matching up the cursor with the mouse coordinates...
* I bumped up the DirectInput API used to version 7 in order to get
access to mouse buttons 4-7. I've had to inject a little bit of the DX7
headers into SDL there as the MinGW ones aren't up to date in this respect.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Thu, 02 Apr 2009 04:43:36 +0000 |
parents | 7a610f25c12f |
children | 782fd950bd46 |
line wrap: on
line source
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * from: @(#)fdlibm.h 5.1 93/09/24 * $Id$ */ #ifndef _MATH_PRIVATE_H_ #define _MATH_PRIVATE_H_ #include "SDL_name.h" #include "SDL_endian.h" #define huge really_big /* huge is a reserved keyword in VC++ 6.0 */ #define u_int32_t uint32_t /* The original fdlibm code used statements like: n0 = ((*(int*)&one)>>29)^1; * index of high word * ix0 = *(n0+(int*)&x); * high word of x * ix1 = *((1-n0)+(int*)&x); * low word of x * to dig two 32 bit words out of the 64 bit IEEE floating point value. That is non-ANSI, and, moreover, the gcc instruction scheduler gets it wrong. We instead use the following macros. Unlike the original code, we determine the endianness at compile time, not at run time; I don't see much benefit to selecting endianness at run time. */ /* A union which permits us to convert between a double and two 32 bit ints. */ /* * Math on arm is special: * For FPA, float words are always big-endian. * For VFP, floats words follow the memory system mode. */ #if (SDL_BYTEORDER == SDL_BIG_ENDIAN) || \ (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__))) typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; } ieee_double_shape_type; #else typedef union { double value; struct { u_int32_t lsw; u_int32_t msw; } parts; } ieee_double_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i,d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (0) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i,d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d,v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (0) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d,v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (0) /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; u_int32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) #ifdef __STDC__ static const double #else static double #endif zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ huge = 1.0e+300, tiny = 1.0e-300; #endif /* _MATH_PRIVATE_H_ */