view src/audio/dc/aica.c @ 4167:a6f635e5eaa6 SDL-1.2

Fixed bug #611 From Tim Angus 2008-08-12 11:18:06 I'm one of the maintainers of ioquake3.org, an updated version of the Quake 3 engine. Relatively recently, we moved ioq3 to use SDL as a replacement for 95% of the platform specific code that was there. On the whole it's doing a great job but unfortunately since the move we've been getting complaints about the quality of the mouse input on the Windows platform to the point where for many the game is unplayable. Put in other terms, the current stable SDL 1.2 is basically not fit for purpose if you need high quality mouse input as you do in a first person shooter. Over the weekend I decided to pull my finger out and actually figure out what's going on. There are basically two major problems. Firstly, when using the "windib" driver, mouse input is gathered via the WM_MOUSEMOVE message. Googling for this indicates that often this is known to result in "spurious" and/or "missing" mouse movement events; this is the primary cause of the poor mouse input. The second problem is that the "directx" driver does not work at all in combination with OpenGL meaning that you can't use DirectInput if your application also uses OpenGL. In other words you're locked into using the "windib" driver and its poor mouse input. In order to address these problems I've done the following: * Remove WM_MOUSEMOVE based motion event generation and replace with calls to GetCursorPos which seems much more reliable. In order to achieve this I've moved mouse motion out into a separate function that is called once per DIB_PumpEvents. * Remove the restriction on the "directx" driver being inoperable in combination with OpenGL. There is a bug for this issues that I've hijacked to a certain extent (http://bugzilla.libsdl.org/show_bug.cgi?id=265). I'm the first to admit I don't really understand why this restriction is there in the first place. The commit message for the bug fix that introduced this restriction (r581) isn't very elaborate and I couldn't see any other bug tracking the issue. If anyone has more information on the bug that was avoided by r581 it would be helpful as I/someone could then look into addressing the problem without disabling the "directx" driver. * I've also removed the restriction on not being allowed to use DirectInput in windowed mode. I couldn't see any reason for this, at least not from our perspective. I have my suspicions that it'll be something like matching up the cursor with the mouse coordinates... * I bumped up the DirectInput API used to version 7 in order to get access to mouse buttons 4-7. I've had to inject a little bit of the DX7 headers into SDL there as the MinGW ones aren't up to date in this respect.
author Sam Lantinga <slouken@libsdl.org>
date Thu, 02 Apr 2009 04:43:36 +0000
parents 11134dc42da8
children 782fd950bd46 c121d94672cb
line wrap: on
line source

/* This file is part of the Dreamcast function library.
 * Please see libdream.c for further details.
 *
 * (c)2000 Dan Potter
 * modify BERO
 */
#include "aica.h"

#include <arch/irq.h>
#include <dc/spu.h>

/* #define dc_snd_base ((volatile unsigned char *)0x00800000) */ /* arm side */
#define dc_snd_base ((volatile unsigned char *)0xa0700000) /* dc side */

/* Some convienence macros */
#define	SNDREGADDR(x)	(0xa0700000 + (x))
#define	CHNREGADDR(ch,x)	SNDREGADDR(0x80*(ch)+(x))


#define SNDREG32(x)	(*(volatile unsigned long *)SNDREGADDR(x))
#define SNDREG8(x)	(*(volatile unsigned char *)SNDREGADDR(x))
#define CHNREG32(ch, x) (*(volatile unsigned long *)CHNREGADDR(ch,x))
#define CHNREG8(ch, x)	(*(volatile unsigned long *)CHNREGADDR(ch,x))

#define G2_LOCK(OLD) \
	do { \
		if (!irq_inside_int()) \
			OLD = irq_disable(); \
		/* suspend any G2 DMA here... */ \
		while((*(volatile unsigned int *)0xa05f688c) & 0x20) \
			; \
	} while(0)

#define G2_UNLOCK(OLD) \
	do { \
		/* resume any G2 DMA here... */ \
		if (!irq_inside_int()) \
			irq_restore(OLD); \
	} while(0)


void aica_init() {
	int i, j, old = 0;
	
	/* Initialize AICA channels */	
	G2_LOCK(old);
	SNDREG32(0x2800) = 0x0000;
	
	for (i=0; i<64; i++) {
		for (j=0; j<0x80; j+=4) {
			if ((j&31)==0) g2_fifo_wait();
			CHNREG32(i, j) = 0;
		}
		g2_fifo_wait();
		CHNREG32(i,0) = 0x8000;
		CHNREG32(i,20) = 0x1f;
	}

	SNDREG32(0x2800) = 0x000f;
	g2_fifo_wait();
	G2_UNLOCK(old);
}

/* Translates a volume from linear form to logarithmic form (required by
   the AICA chip */
/* int logs[] = {

0, 40, 50, 58, 63, 68, 73, 77, 80, 83, 86, 89, 92, 94, 97, 99, 101, 103,
105, 107, 109, 111, 112, 114, 116, 117, 119, 120, 122, 123, 125, 126, 127,
129, 130, 131, 133, 134, 135, 136, 137, 139, 140, 141, 142, 143, 144, 145,
146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 156, 157, 158, 159,
160, 161, 162, 162, 163, 164, 165, 166, 166, 167, 168, 169, 170, 170, 171,
172, 172, 173, 174, 175, 175, 176, 177, 177, 178, 179, 180, 180, 181, 182,
182, 183, 183, 184, 185, 185, 186, 187, 187, 188, 188, 189, 190, 190, 191,
191, 192, 193, 193, 194, 194, 195, 196, 196, 197, 197, 198, 198, 199, 199,
200, 201, 201, 202, 202, 203, 203, 204, 204, 205, 205, 206, 206, 207, 207,
208, 208, 209, 209, 210, 210, 211, 211, 212, 212, 213, 213, 214, 214, 215,
215, 216, 216, 217, 217, 217, 218, 218, 219, 219, 220, 220, 221, 221, 222,
222, 222, 223, 223, 224, 224, 225, 225, 225, 226, 226, 227, 227, 228, 228,
228, 229, 229, 230, 230, 230, 231, 231, 232, 232, 232, 233, 233, 234, 234,
234, 235, 235, 236, 236, 236, 237, 237, 238, 238, 238, 239, 239, 240, 240,
240, 241, 241, 241, 242, 242, 243, 243, 243, 244, 244, 244, 245, 245, 245,
246, 246, 247, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 251,
251, 251, 252, 252, 252, 253, 253, 253, 254, 254, 254, 255

}; */

const static unsigned char logs[] = {
	0, 15, 22, 27, 31, 35, 39, 42, 45, 47, 50, 52, 55, 57, 59, 61,
	63, 65, 67, 69, 71, 73, 74, 76, 78, 79, 81, 82, 84, 85, 87, 88,
	90, 91, 92, 94, 95, 96, 98, 99, 100, 102, 103, 104, 105, 106,
	108, 109, 110, 111, 112, 113, 114, 116, 117, 118, 119, 120, 121,
	122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134,
	135, 136, 137, 138, 138, 139, 140, 141, 142, 143, 144, 145, 146,
	146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 156,
	157, 158, 159, 160, 160, 161, 162, 163, 164, 164, 165, 166, 167,
	167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176, 176,
	177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185, 185,
	186, 187, 187, 188, 189, 189, 190, 191, 191, 192, 193, 193, 194,
	195, 195, 196, 197, 197, 198, 199, 199, 200, 200, 201, 202, 202,
	203, 204, 204, 205, 205, 206, 207, 207, 208, 209, 209, 210, 210,
	211, 212, 212, 213, 213, 214, 215, 215, 216, 216, 217, 217, 218,
	219, 219, 220, 220, 221, 221, 222, 223, 223, 224, 224, 225, 225,
	226, 227, 227, 228, 228, 229, 229, 230, 230, 231, 232, 232, 233,
	233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 239, 239, 240,
	240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246,
	247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253, 254, 255
};

/* For the moment this is going to have to suffice, until we really
   figure out what these mean. */
#define AICA_PAN(x) ((x)==0x80?(0):((x)<0x80?(0x1f):(0x0f)))
#define AICA_VOL(x) (0xff - logs[128 + (((x) & 0xff) / 2)])
//#define AICA_VOL(x) (0xff - logs[x&255])

static inline unsigned  AICA_FREQ(unsigned freq)	{
	unsigned long freq_lo, freq_base = 5644800;
	int freq_hi = 7;

	/* Need to convert frequency to floating point format
	   (freq_hi is exponent, freq_lo is mantissa)
	   Formula is ferq = 44100*2^freq_hi*(1+freq_lo/1024) */
	while (freq < freq_base && freq_hi > -8) {
		freq_base >>= 1;
		--freq_hi;
	}
	while (freq < freq_base && freq_hi > -8) {
		freq_base >>= 1;
		freq_hi--;
	}
	freq_lo = (freq<<10) / freq_base;
	return (freq_hi << 11) | (freq_lo & 1023);
}

/* Sets up a sound channel completely. This is generally good if you want
   a quick and dirty way to play notes. If you want a more comprehensive
   set of routines (more like PC wavetable cards) see below.
   
   ch is the channel to play on (0 - 63)
   smpptr is the pointer to the sound data; if you're running off the
     SH4, then this ought to be (ptr - 0xa0800000); otherwise it's just
     ptr. Basically, it's an offset into sound ram.
   mode is one of the mode constants (16 bit, 8 bit, ADPCM)
   nsamp is the number of samples to play (not number of bytes!)
   freq is the sampling rate of the sound
   vol is the volume, 0 to 0xff (0xff is louder)
   pan is a panning constant -- 0 is left, 128 is center, 255 is right.

   This routine (and the similar ones) owe a lot to Marcus' sound example -- 
   I hadn't gotten quite this far into dissecting the individual regs yet. */
void aica_play(int ch,int mode,unsigned long smpptr,int loopst,int loopend,int freq,int vol,int pan,int loopflag) {
/*	int i;
*/
	int val;
	int old = 0;

	/* Stop the channel (if it's already playing) */
	aica_stop(ch);
	/* doesn't seem to be needed, but it's here just in case */
/*
	for (i=0; i<256; i++) {
		asm("nop");
		asm("nop");
		asm("nop");
		asm("nop");
	}
*/
	G2_LOCK(old);
	/* Envelope setup. The first of these is the loop point,
	   e.g., where the sample starts over when it loops. The second
	   is the loop end. This is the full length of the sample when
	   you are not looping, or the loop end point when you are (though
	   storing more than that is a waste of memory if you're not doing
	   volume enveloping). */
	CHNREG32(ch, 8) = loopst & 0xffff;
	CHNREG32(ch, 12) = loopend & 0xffff;
	
	/* Write resulting values */
	CHNREG32(ch, 24) = AICA_FREQ(freq);
	
	/* Set volume, pan, and some other things that we don't know what
	   they do =) */
	CHNREG32(ch, 36) = AICA_PAN(pan) | (0xf<<8);
	/* Convert the incoming volume and pan into hardware values */
	/* Vol starts at zero so we can ramp */
	vol = AICA_VOL(vol);
	CHNREG32(ch, 40) = 0x24 | (vol<<8);
	/* Convert the incoming volume and pan into hardware values */
	/* Vol starts at zero so we can ramp */

	/* If we supported volume envelopes (which we don't yet) then
	   this value would set that up. The top 4 bits determine the
	   envelope speed. f is the fastest, 1 is the slowest, and 0
	   seems to be an invalid value and does weird things). The
	   default (below) sets it into normal mode (play and terminate/loop).
	CHNREG32(ch, 16) = 0xf010;
	*/
	CHNREG32(ch, 16) = 0x1f;	/* No volume envelope */
	
	
	/* Set sample format, buffer address, and looping control. If
	   0x0200 mask is set on reg 0, the sample loops infinitely. If
	   it's not set, the sample plays once and terminates. We'll
	   also set the bits to start playback here. */
	CHNREG32(ch, 4) = smpptr & 0xffff;
	val = 0xc000 | 0x0000 | (mode<<7) | (smpptr >> 16);
	if (loopflag) val|=0x200;
	
	CHNREG32(ch, 0) = val;
	
	G2_UNLOCK(old);

	/* Enable playback */
	/* CHNREG32(ch, 0) |= 0xc000; */
	g2_fifo_wait();

#if 0
	for (i=0xff; i>=vol; i--) {
		if ((i&7)==0) g2_fifo_wait();
		CHNREG32(ch, 40) =  0x24 | (i<<8);;
	}

	g2_fifo_wait();
#endif
}

/* Stop the sound on a given channel */
void aica_stop(int ch) {
	g2_write_32(CHNREGADDR(ch, 0),(g2_read_32(CHNREGADDR(ch, 0)) & ~0x4000) | 0x8000);
	g2_fifo_wait();
}


/* The rest of these routines can change the channel in mid-stride so you
   can do things like vibrato and panning effects. */
   
/* Set channel volume */
void aica_vol(int ch,int vol) {
//	g2_write_8(CHNREGADDR(ch, 41),AICA_VOL(vol));
	g2_write_32(CHNREGADDR(ch, 40),(g2_read_32(CHNREGADDR(ch, 40))&0xffff00ff)|(AICA_VOL(vol)<<8) );
	g2_fifo_wait();
}

/* Set channel pan */
void aica_pan(int ch,int pan) {
//	g2_write_8(CHNREGADDR(ch, 36),AICA_PAN(pan));
	g2_write_32(CHNREGADDR(ch, 36),(g2_read_32(CHNREGADDR(ch, 36))&0xffffff00)|(AICA_PAN(pan)) );
	g2_fifo_wait();
}

/* Set channel frequency */
void aica_freq(int ch,int freq) {
	g2_write_32(CHNREGADDR(ch, 24),AICA_FREQ(freq));
	g2_fifo_wait();
}

/* Get channel position */
int aica_get_pos(int ch) {
#if 1
	/* Observe channel ch */
	g2_write_32(SNDREGADDR(0x280c),(g2_read_32(SNDREGADDR(0x280c))&0xffff00ff) | (ch<<8));
	g2_fifo_wait();
	/* Update position counters */
	return g2_read_32(SNDREGADDR(0x2814)) & 0xffff;
#else
	/* Observe channel ch */
	g2_write_8(SNDREGADDR(0x280d),ch);
	/* Update position counters */
	return g2_read_32(SNDREGADDR(0x2814)) & 0xffff;
#endif
}