Mercurial > sdl-ios-xcode
view docs/man3/SDL_PixelFormat.3 @ 4167:a6f635e5eaa6 SDL-1.2
Fixed bug #611
From Tim Angus 2008-08-12 11:18:06
I'm one of the maintainers of ioquake3.org, an updated version of the
Quake 3 engine. Relatively recently, we moved ioq3 to use SDL as a
replacement for 95% of the platform specific code that was there. On the
whole it's doing a great job but unfortunately since the move we've been
getting complaints about the quality of the mouse input on the Windows
platform to the point where for many the game is unplayable. Put in
other terms, the current stable SDL 1.2 is basically not fit for purpose
if you need high quality mouse input as you do in a first person shooter.
Over the weekend I decided to pull my finger out and actually figure out
what's going on. There are basically two major problems. Firstly, when
using the "windib" driver, mouse input is gathered via the WM_MOUSEMOVE
message. Googling for this indicates that often this is known to result
in "spurious" and/or "missing" mouse movement events; this is the
primary cause of the poor mouse input. The second problem is that the
"directx" driver does not work at all in combination with OpenGL meaning
that you can't use DirectInput if your application also uses OpenGL. In
other words you're locked into using the "windib" driver and its poor
mouse input.
In order to address these problems I've done the following:
* Remove WM_MOUSEMOVE based motion event generation and replace with
calls to GetCursorPos which seems much more reliable. In order to
achieve this I've moved mouse motion out into a separate function that
is called once per DIB_PumpEvents.
* Remove the restriction on the "directx" driver being inoperable in
combination with OpenGL. There is a bug for this issues that I've
hijacked to a certain extent
(http://bugzilla.libsdl.org/show_bug.cgi?id=265). I'm the first to admit
I don't really understand why this restriction is there in the first
place. The commit message for the bug fix that introduced this
restriction (r581) isn't very elaborate and I couldn't see any other bug
tracking the issue. If anyone has more information on the bug that was
avoided by r581 it would be helpful as I/someone could then look into
addressing the problem without disabling the "directx" driver.
* I've also removed the restriction on not being allowed to use
DirectInput in windowed mode. I couldn't see any reason for this, at
least not from our perspective. I have my suspicions that it'll be
something like matching up the cursor with the mouse coordinates...
* I bumped up the DirectInput API used to version 7 in order to get
access to mouse buttons 4-7. I've had to inject a little bit of the DX7
headers into SDL there as the MinGW ones aren't up to date in this respect.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Thu, 02 Apr 2009 04:43:36 +0000 |
parents | 4e3b250c950e |
children | 1238da4a7112 |
line wrap: on
line source
.TH "SDL_PixelFormat" "3" "Tue 11 Sep 2001, 23:01" "SDL" "SDL API Reference" .SH "NAME" SDL_PixelFormat \- Stores surface format information .SH "STRUCTURE DEFINITION" .PP .nf \f(CWtypedef struct SDL_PixelFormat { SDL_Palette *palette; Uint8 BitsPerPixel; Uint8 BytesPerPixel; Uint8 Rloss, Gloss, Bloss, Aloss; Uint8 Rshift, Gshift, Bshift, Ashift; Uint32 Rmask, Gmask, Bmask, Amask; Uint32 colorkey; Uint8 alpha; } SDL_PixelFormat;\fR .fi .PP .SH "STRUCTURE DATA" .TP 20 \fBpalette\fR Pointer to the \fIpalette\fR, or \fBNULL\fP if the \fBBitsPerPixel\fR>8 .TP 20 \fBBitsPerPixel\fR The number of bits used to represent each pixel in a surface\&. Usually 8, 16, 24 or 32\&. .TP 20 \fBBytesPerPixel\fR The number of bytes used to represent each pixel in a surface\&. Usually one to four\&. .TP 20 \fB[RGBA]mask\fR Binary mask used to retrieve individual color values .TP 20 \fB[RGBA]loss\fR Precision loss of each color component (2^[RGBA]loss) .TP 20 \fB[RGBA]shift\fR Binary left shift of each color component in the pixel value .TP 20 \fBcolorkey\fR Pixel value of transparent pixels .TP 20 \fBalpha\fR Overall surface alpha value .SH "DESCRIPTION" .PP A \fBSDL_PixelFormat\fR describes the format of the pixel data stored at the \fBpixels\fR field of a \fI\fBSDL_Surface\fR\fR\&. Every surface stores a \fBSDL_PixelFormat\fR in the \fBformat\fR field\&. .PP If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color information is essential\&. .PP 8-bit pixel formats are the easiest to understand\&. Since its an 8-bit format, we have 8 \fBBitsPerPixel\fR and 1 \fBBytesPerPixel\fR\&. Since \fBBytesPerPixel\fR is 1, all pixels are represented by a Uint8 which contains an index into \fBpalette\fR->\fBcolors\fR\&. So, to determine the color of a pixel in a 8-bit surface: we read the color index from \fBsurface\fR->\fBpixels\fR and we use that index to read the \fI\fBSDL_Color\fR\fR structure from \fBsurface\fR->\fBformat\fR->\fBpalette\fR->\fBcolors\fR\&. Like so: .PP .nf \f(CWSDL_Surface *surface; SDL_PixelFormat *fmt; SDL_Color *color; Uint8 index; \&. \&. /* Create surface */ \&. \&. fmt=surface->format; /* Check the bitdepth of the surface */ if(fmt->BitsPerPixel!=8){ fprintf(stderr, "Not an 8-bit surface\&. "); return(-1); } /* Lock the surface */ SDL_LockSurface(surface); /* Get the topleft pixel */ index=*(Uint8 *)surface->pixels; color=fmt->palette->colors[index]; /* Unlock the surface */ SDL_UnlockSurface(surface); printf("Pixel Color-> Red: %d, Green: %d, Blue: %d\&. Index: %d ", color->r, color->g, color->b, index); \&. \&.\fR .fi .PP .PP Pixel formats above 8-bit are an entirely different experience\&. They are considered to be "TrueColor" formats and the color information is stored in the pixels themselves, not in a palette\&. The mask, shift and loss fields tell us how the color information is encoded\&. The mask fields allow us to isolate each color component, the shift fields tell us the number of bits to the right of each component in the pixel value and the loss fields tell us the number of bits lost from each component when packing 8-bit color component in a pixel\&. .PP .nf \f(CW/* Extracting color components from a 32-bit color value */ SDL_PixelFormat *fmt; SDL_Surface *surface; Uint32 temp, pixel; Uint8 red, green, blue, alpha; \&. \&. \&. fmt=surface->format; SDL_LockSurface(surface); pixel=*((Uint32*)surface->pixels); SDL_UnlockSurface(surface); /* Get Red component */ temp=pixel&fmt->Rmask; /* Isolate red component */ temp=temp>>fmt->Rshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Rloss; /* Expand to a full 8-bit number */ red=(Uint8)temp; /* Get Green component */ temp=pixel&fmt->Gmask; /* Isolate green component */ temp=temp>>fmt->Gshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Gloss; /* Expand to a full 8-bit number */ green=(Uint8)temp; /* Get Blue component */ temp=pixel&fmt->Bmask; /* Isolate blue component */ temp=temp>>fmt->Bshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Bloss; /* Expand to a full 8-bit number */ blue=(Uint8)temp; /* Get Alpha component */ temp=pixel&fmt->Amask; /* Isolate alpha component */ temp=temp>>fmt->Ashift;/* Shift it down to 8-bit */ temp=temp<<fmt->Aloss; /* Expand to a full 8-bit number */ alpha=(Uint8)temp; printf("Pixel Color -> R: %d, G: %d, B: %d, A: %d ", red, green, blue, alpha); \&. \&. \&.\fR .fi .PP .SH "SEE ALSO" .PP \fI\fBSDL_Surface\fR\fR, \fI\fBSDL_MapRGB\fP\fR ...\" created by instant / docbook-to-man, Tue 11 Sep 2001, 23:01