view src/libm/s_cos.c @ 3534:9d129e1d0782

Implemented RenderReadPixels() and RenderWritePixels() for GDI renderer.
author Sam Lantinga <slouken@libsdl.org>
date Mon, 07 Dec 2009 09:44:55 +0000
parents dc1eb82ffdaa
children
line wrap: on
line source

/* @(#)s_cos.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static const char rcsid[] =
    "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $";
#endif

/* cos(x)
 * Return cosine function of x.
 *
 * kernel function:
 *	__kernel_sin		... sine function on [-pi/4,pi/4]
 *	__kernel_cos		... cosine function on [-pi/4,pi/4]
 *	__ieee754_rem_pio2	... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *	in [-pi/4 , +pi/4], and let n = k mod 4.
 *	We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 T
 *	    1	       C	  -S		-1/T
 *	    2	      -S	  -C		 T
 *	    3	      -C	   S		-1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded
 */

#include "math.h"
#include "math_private.h"

libm_hidden_proto(cos)
#ifdef __STDC__
     double cos(double x)
#else
     double cos(x)
     double x;
#endif
{
    double y[2], z = 0.0;
    int32_t n, ix;

    /* High word of x. */
    GET_HIGH_WORD(ix, x);

    /* |x| ~< pi/4 */
    ix &= 0x7fffffff;
    if (ix <= 0x3fe921fb)
        return __kernel_cos(x, z);

    /* cos(Inf or NaN) is NaN */
    else if (ix >= 0x7ff00000)
        return x - x;

    /* argument reduction needed */
    else {
        n = __ieee754_rem_pio2(x, y);
        switch (n & 3) {
        case 0:
            return __kernel_cos(y[0], y[1]);
        case 1:
            return -__kernel_sin(y[0], y[1], 1);
        case 2:
            return -__kernel_cos(y[0], y[1]);
        default:
            return __kernel_sin(y[0], y[1], 1);
        }
    }
}

libm_hidden_def(cos)