view src/thread/dc/SDL_syscond.c @ 1812:9c882e94b545

Fixed bug #208 So, here's a patch with a reimplementation of QZ_SetIcon() that does what I described above. I apologize for the delay, I've been quite busy in the last few days. It appears to work here on 10.4.5 PPC in the limited testing that I've done; I'll try to test it on 10.3.9 and 10.2.8 as well, but that might take another week or so. Please test on i386. Regarding alpha channels, per-surface alpha, and color keys, the same semantics as for regular blits to an RGB surface should apply (for the final icon composited onto the dock), unless I made a mistake - except in one pathological case: if the icon surface has an alpha channel, its SDL_SRCALPHA flag is not set (i.e. it has been explicitly cleared, since it's on by default for RGBA surfaces), and it has a color key, plus an explicit mask was specified (instead of the one autogenerated from the colorkey), then the color-keyed areas appear black instead of transparent. I found no elegant way of fixing this, was too lazy to implement the inelegant one, and decided that it isn't worth the effort (but if someone disagrees, I can do it).
author Sam Lantinga <slouken@libsdl.org>
date Thu, 11 May 2006 03:45:55 +0000
parents d910939febfa
children 782fd950bd46 c121d94672cb a1b03ba2fcd0
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2006 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    Sam Lantinga
    slouken@libsdl.org
*/
#include "SDL_config.h"

/* An implementation of condition variables using semaphores and mutexes */
/*
   This implementation borrows heavily from the BeOS condition variable
   implementation, written by Christopher Tate and Owen Smith.  Thanks!
 */

#include "SDL_thread.h"

struct SDL_cond
{
	SDL_mutex *lock;
	int waiting;
	int signals;
	SDL_sem *wait_sem;
	SDL_sem *wait_done;
};

/* Create a condition variable */
SDL_cond * SDL_CreateCond(void)
{
	SDL_cond *cond;

	cond = (SDL_cond *) SDL_malloc(sizeof(SDL_cond));
	if ( cond ) {
		cond->lock = SDL_CreateMutex();
		cond->wait_sem = SDL_CreateSemaphore(0);
		cond->wait_done = SDL_CreateSemaphore(0);
		cond->waiting = cond->signals = 0;
		if ( ! cond->lock || ! cond->wait_sem || ! cond->wait_done ) {
			SDL_DestroyCond(cond);
			cond = NULL;
		}
	} else {
		SDL_OutOfMemory();
	}
	return(cond);
}

/* Destroy a condition variable */
void SDL_DestroyCond(SDL_cond *cond)
{
	if ( cond ) {
		if ( cond->wait_sem ) {
			SDL_DestroySemaphore(cond->wait_sem);
		}
		if ( cond->wait_done ) {
			SDL_DestroySemaphore(cond->wait_done);
		}
		if ( cond->lock ) {
			SDL_DestroyMutex(cond->lock);
		}
		SDL_free(cond);
	}
}

/* Restart one of the threads that are waiting on the condition variable */
int SDL_CondSignal(SDL_cond *cond)
{
	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* If there are waiting threads not already signalled, then
	   signal the condition and wait for the thread to respond.
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->waiting > cond->signals ) {
		++cond->signals;
		SDL_SemPost(cond->wait_sem);
		SDL_UnlockMutex(cond->lock);
		SDL_SemWait(cond->wait_done);
	} else {
		SDL_UnlockMutex(cond->lock);
	}

	return 0;
}

/* Restart all threads that are waiting on the condition variable */
int SDL_CondBroadcast(SDL_cond *cond)
{
	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* If there are waiting threads not already signalled, then
	   signal the condition and wait for the thread to respond.
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->waiting > cond->signals ) {
		int i, num_waiting;

		num_waiting = (cond->waiting - cond->signals);
		cond->signals = cond->waiting;
		for ( i=0; i<num_waiting; ++i ) {
			SDL_SemPost(cond->wait_sem);
		}
		/* Now all released threads are blocked here, waiting for us.
		   Collect them all (and win fabulous prizes!) :-)
		 */
		SDL_UnlockMutex(cond->lock);
		for ( i=0; i<num_waiting; ++i ) {
			SDL_SemWait(cond->wait_done);
		}
	} else {
		SDL_UnlockMutex(cond->lock);
	}

	return 0;
}

/* Wait on the condition variable for at most 'ms' milliseconds.
   The mutex must be locked before entering this function!
   The mutex is unlocked during the wait, and locked again after the wait.

Typical use:

Thread A:
	SDL_LockMutex(lock);
	while ( ! condition ) {
		SDL_CondWait(cond);
	}
	SDL_UnlockMutex(lock);

Thread B:
	SDL_LockMutex(lock);
	...
	condition = true;
	...
	SDL_UnlockMutex(lock);
 */
int SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms)
{
	int retval;

	if ( ! cond ) {
		SDL_SetError("Passed a NULL condition variable");
		return -1;
	}

	/* Obtain the protection mutex, and increment the number of waiters.
	   This allows the signal mechanism to only perform a signal if there
	   are waiting threads.
	 */
	SDL_LockMutex(cond->lock);
	++cond->waiting;
	SDL_UnlockMutex(cond->lock);

	/* Unlock the mutex, as is required by condition variable semantics */
	SDL_UnlockMutex(mutex);

	/* Wait for a signal */
	if ( ms == SDL_MUTEX_MAXWAIT ) {
		retval = SDL_SemWait(cond->wait_sem);
	} else {
		retval = SDL_SemWaitTimeout(cond->wait_sem, ms);
	}

	/* Let the signaler know we have completed the wait, otherwise
           the signaler can race ahead and get the condition semaphore
           if we are stopped between the mutex unlock and semaphore wait,
           giving a deadlock.  See the following URL for details:
        http://www-classic.be.com/aboutbe/benewsletter/volume_III/Issue40.html
	*/
	SDL_LockMutex(cond->lock);
	if ( cond->signals > 0 ) {
		/* If we timed out, we need to eat a condition signal */
		if ( retval > 0 ) {
			SDL_SemWait(cond->wait_sem);
		}
		/* We always notify the signal thread that we are done */
		SDL_SemPost(cond->wait_done);

		/* Signal handshake complete */
		--cond->signals;
	}
	--cond->waiting;
	SDL_UnlockMutex(cond->lock);

	/* Lock the mutex, as is required by condition variable semantics */
	SDL_LockMutex(mutex);

	return retval;
}

/* Wait on the condition variable forever */
int SDL_CondWait(SDL_cond *cond, SDL_mutex *mutex)
{
	return SDL_CondWaitTimeout(cond, mutex, SDL_MUTEX_MAXWAIT);
}