Mercurial > sdl-ios-xcode
view src/video/math_private.h @ 3877:81f66f258d77 SDL-1.2
Fixed bug #281
------- Comment #2 From Christian Walther 2006-07-23 07:37 [reply] -------
Wow, that was an interesting bug to chase. It was a timing issue: it seems that
for some reason, a certain time must pass between ShowMenuBar() being called in
QZ_UnsetVideoMode() and the application quitting. Before rev. 1885, this delay
was provided by the slow hand-coded fade. With the asynchronous Core Graphics
fading introduced in rev. 1885, that delay was no longer present (most of the
time) and the bug became apparent. Adding an SDL_Delay(100) somewhere between
ShowMenuBar() and the end of QZ_VideoQuit() lowered the frequency of the bug
appearing from "almost every time" to "very rarely" here.
However, there is another solution: doing the ShowMenuBar() before releasing
the captured display instead of afterwards. Apparently, no delay is necessary
in that case, and it looks nicer to me anyway because it is the reverse order
of the way things are set up in the beginning: capture display - set video mode
- hide menu bar - ... - show menu bar - reset video mode - release captured
display. So, this is what the attached patch does.
In addition, I've taken the liberty of
- removing some unused code that I forgot to remove in rev. 1885,
- fixing two warnings about undeclared functions in SDL_QuartzVideo.m by
including OpenGL.h (whose name is a bit misleading - it only declares CGL
stuff, so there's no interference with SDL_opengl.h).
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 24 Sep 2006 01:27:40 +0000 |
parents | 7a610f25c12f |
children | 782fd950bd46 |
line wrap: on
line source
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * from: @(#)fdlibm.h 5.1 93/09/24 * $Id$ */ #ifndef _MATH_PRIVATE_H_ #define _MATH_PRIVATE_H_ #include "SDL_name.h" #include "SDL_endian.h" #define huge really_big /* huge is a reserved keyword in VC++ 6.0 */ #define u_int32_t uint32_t /* The original fdlibm code used statements like: n0 = ((*(int*)&one)>>29)^1; * index of high word * ix0 = *(n0+(int*)&x); * high word of x * ix1 = *((1-n0)+(int*)&x); * low word of x * to dig two 32 bit words out of the 64 bit IEEE floating point value. That is non-ANSI, and, moreover, the gcc instruction scheduler gets it wrong. We instead use the following macros. Unlike the original code, we determine the endianness at compile time, not at run time; I don't see much benefit to selecting endianness at run time. */ /* A union which permits us to convert between a double and two 32 bit ints. */ /* * Math on arm is special: * For FPA, float words are always big-endian. * For VFP, floats words follow the memory system mode. */ #if (SDL_BYTEORDER == SDL_BIG_ENDIAN) || \ (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__))) typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; } ieee_double_shape_type; #else typedef union { double value; struct { u_int32_t lsw; u_int32_t msw; } parts; } ieee_double_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i,d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (0) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i,d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d,v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (0) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d,v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (0) /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; u_int32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) #ifdef __STDC__ static const double #else static double #endif zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ two54 = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */ twom54 = 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */ huge = 1.0e+300, tiny = 1.0e-300; #endif /* _MATH_PRIVATE_H_ */