Mercurial > sdl-ios-xcode
view docs/man3/SDL_PixelFormat.3 @ 1260:80f8c94b5199
Date: 10 Jun 2003 15:30:59 -0400
From: Mike Shal
Subject: [SDL] Bug in SDL_wave.c?
Hey everyone, I'm not sure if this is a bug in SDL, or if I just have
incorrect WAV files. The problem I'm having is loading multiple
concatenated WAVs from SDL_LoadWAV_RW. Some WAV files put comments at
the end of the file (which may be bad form), and SDL doesn't skip past
them when reading from the RWops. So the next WAV I try to load will
start at the comment section of the previous WAV, which obviously
doesn't work. If anyone else is having this problem, one quick fix you
can do is run sox on the bad WAVs, which strips out all of the comment
sections.
Eg:
$ sox sound.wav tmp.wav
$ mv -f tmp.wav sound.wav
The other fix is to patch SDL_wave.c, which is included with this email.
(Assuming I made the patch correctly :). All it does is calculate how
much remaining space there is in the WAV file after the data chunk, and
does SDL_RWseek to skip it. I don't think it should interfere with
anything else, but if someone could check it that would be nice :). If
the bug is really with SDL and not with my WAVs, can someone work this
into the next version of SDL? Thanks,
-Mike Shal
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Tue, 24 Jan 2006 07:20:18 +0000 |
parents | e5bc29de3f0a |
children | e867f327aa54 |
line wrap: on
line source
.TH "SDL_PixelFormat" "3" "Tue 11 Sep 2001, 23:01" "SDL" "SDL API Reference" .SH "NAME" SDL_PixelFormat\- Stores surface format information .SH "STRUCTURE DEFINITION" .PP .nf \f(CWtypedef struct{ SDL_Palette *palette; Uint8 BitsPerPixel; Uint8 BytesPerPixel; Uint32 Rmask, Gmask, Bmask, Amask; Uint8 Rshift, Gshift, Bshift, Ashift; Uint8 Rloss, Gloss, Bloss, Aloss; Uint32 colorkey; Uint8 alpha; } SDL_PixelFormat;\fR .fi .PP .SH "STRUCTURE DATA" .TP 20 \fBpalette\fR Pointer to the \fIpalette\fR, or \fBNULL\fP if the \fBBitsPerPixel\fR>8 .TP 20 \fBBitsPerPixel\fR The number of bits used to represent each pixel in a surface\&. Usually 8, 16, 24 or 32\&. .TP 20 \fBBytesPerPixel\fR The number of bytes used to represent each pixel in a surface\&. Usually one to four\&. .TP 20 \fB[RGBA]mask\fR Binary mask used to retrieve individual color values .TP 20 \fB[RGBA]loss\fR Precision loss of each color component (2^[RGBA]loss) .TP 20 \fB[RGBA]shift\fR Binary left shift of each color component in the pixel value .TP 20 \fBcolorkey\fR Pixel value of transparent pixels .TP 20 \fBalpha\fR Overall surface alpha value .SH "DESCRIPTION" .PP A \fBSDL_PixelFormat\fR describes the format of the pixel data stored at the \fBpixels\fR field of a \fI\fBSDL_Surface\fR\fR\&. Every surface stores a \fBSDL_PixelFormat\fR in the \fBformat\fR field\&. .PP If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color information is essential\&. .PP 8-bit pixel formats are the easiest to understand\&. Since its an 8-bit format, we have 8 \fBBitsPerPixel\fR and 1 \fBBytesPerPixel\fR\&. Since \fBBytesPerPixel\fR is 1, all pixels are represented by a Uint8 which contains an index into \fBpalette\fR->\fBcolors\fR\&. So, to determine the color of a pixel in a 8-bit surface: we read the color index from \fBsurface\fR->\fBpixels\fR and we use that index to read the \fI\fBSDL_Color\fR\fR structure from \fBsurface\fR->\fBformat\fR->\fBpalette\fR->\fBcolors\fR\&. Like so: .PP .nf \f(CWSDL_Surface *surface; SDL_PixelFormat *fmt; SDL_Color *color; Uint8 index; \&. \&. /* Create surface */ \&. \&. fmt=surface->format; /* Check the bitdepth of the surface */ if(fmt->BitsPerPixel!=8){ fprintf(stderr, "Not an 8-bit surface\&. "); return(-1); } /* Lock the surface */ SDL_LockSurface(surface); /* Get the topleft pixel */ index=*(Uint8 *)surface->pixels; color=fmt->palette->colors[index]; /* Unlock the surface */ SDL_UnlockSurface(surface); printf("Pixel Color-> Red: %d, Green: %d, Blue: %d\&. Index: %d ", color->r, color->g, color->b, index); \&. \&.\fR .fi .PP .PP Pixel formats above 8-bit are an entirely different experience\&. They are considered to be "TrueColor" formats and the color information is stored in the pixels themselves, not in a palette\&. The mask, shift and loss fields tell us how the color information is encoded\&. The mask fields allow us to isolate each color component, the shift fields tell us the number of bits to the right of each component in the pixel value and the loss fields tell us the number of bits lost from each component when packing 8-bit color component in a pixel\&. .PP .nf \f(CW/* Extracting color components from a 32-bit color value */ SDL_PixelFormat *fmt; SDL_Surface *surface; Uint32 temp, pixel; Uint8 red, green, blue, alpha; \&. \&. \&. fmt=surface->format; SDL_LockSurface(surface); pixel=*((Uint32*)surface->pixels); SDL_UnlockSurface(surface); /* Get Red component */ temp=pixel&fmt->Rmask; /* Isolate red component */ temp=temp>>fmt->Rshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Rloss; /* Expand to a full 8-bit number */ red=(Uint8)temp; /* Get Green component */ temp=pixel&fmt->Gmask; /* Isolate green component */ temp=temp>>fmt->Gshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Gloss; /* Expand to a full 8-bit number */ green=(Uint8)temp; /* Get Blue component */ temp=pixel&fmt->Bmask; /* Isolate blue component */ temp=temp>>fmt->Bshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Bloss; /* Expand to a full 8-bit number */ blue=(Uint8)temp; /* Get Alpha component */ temp=pixel&fmt->Amask; /* Isolate alpha component */ temp=temp>>fmt->Ashift;/* Shift it down to 8-bit */ temp=temp<<fmt->Aloss; /* Expand to a full 8-bit number */ alpha=(Uint8)temp; printf("Pixel Color -> R: %d, G: %d, B: %d, A: %d ", red, green, blue, alpha); \&. \&. \&.\fR .fi .PP .SH "SEE ALSO" .PP \fI\fBSDL_Surface\fR\fR, \fI\fBSDL_MapRGB\fP\fR ...\" created by instant / docbook-to-man, Tue 11 Sep 2001, 23:01