Mercurial > sdl-ios-xcode
view src/libm/math_private.h @ 5134:7b7da52e8775
Fixed spacing
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Tue, 01 Feb 2011 08:59:22 -0800 |
parents | c2539ff054c8 |
children |
line wrap: on
line source
/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* * from: @(#)fdlibm.h 5.1 93/09/24 * $Id: math_private.h,v 1.3 2004/02/09 07:10:38 andersen Exp $ */ #ifndef _MATH_PRIVATE_H_ #define _MATH_PRIVATE_H_ /*#include <endian.h>*/ #include "SDL_endian.h" /*#include <sys/types.h>*/ #define attribute_hidden #define libm_hidden_proto(x) #define libm_hidden_def(x) typedef unsigned int u_int32_t; /* The original fdlibm code used statements like: n0 = ((*(int*)&one)>>29)^1; * index of high word * ix0 = *(n0+(int*)&x); * high word of x * ix1 = *((1-n0)+(int*)&x); * low word of x * to dig two 32 bit words out of the 64 bit IEEE floating point value. That is non-ANSI, and, moreover, the gcc instruction scheduler gets it wrong. We instead use the following macros. Unlike the original code, we determine the endianness at compile time, not at run time; I don't see much benefit to selecting endianness at run time. */ /* A union which permits us to convert between a double and two 32 bit ints. */ /* * Math on arm is special: * For FPA, float words are always big-endian. * For VFP, floats words follow the memory system mode. */ #if (SDL_BYTEORDER == SDL_BIG_ENDIAN) typedef union { double value; struct { u_int32_t msw; u_int32_t lsw; } parts; } ieee_double_shape_type; #else typedef union { double value; struct { u_int32_t lsw; u_int32_t msw; } parts; } ieee_double_shape_type; #endif /* Get two 32 bit ints from a double. */ #define EXTRACT_WORDS(ix0,ix1,d) \ do { \ ieee_double_shape_type ew_u; \ ew_u.value = (d); \ (ix0) = ew_u.parts.msw; \ (ix1) = ew_u.parts.lsw; \ } while (0) /* Get the more significant 32 bit int from a double. */ #define GET_HIGH_WORD(i,d) \ do { \ ieee_double_shape_type gh_u; \ gh_u.value = (d); \ (i) = gh_u.parts.msw; \ } while (0) /* Get the less significant 32 bit int from a double. */ #define GET_LOW_WORD(i,d) \ do { \ ieee_double_shape_type gl_u; \ gl_u.value = (d); \ (i) = gl_u.parts.lsw; \ } while (0) /* Set a double from two 32 bit ints. */ #define INSERT_WORDS(d,ix0,ix1) \ do { \ ieee_double_shape_type iw_u; \ iw_u.parts.msw = (ix0); \ iw_u.parts.lsw = (ix1); \ (d) = iw_u.value; \ } while (0) /* Set the more significant 32 bits of a double from an int. */ #define SET_HIGH_WORD(d,v) \ do { \ ieee_double_shape_type sh_u; \ sh_u.value = (d); \ sh_u.parts.msw = (v); \ (d) = sh_u.value; \ } while (0) /* Set the less significant 32 bits of a double from an int. */ #define SET_LOW_WORD(d,v) \ do { \ ieee_double_shape_type sl_u; \ sl_u.value = (d); \ sl_u.parts.lsw = (v); \ (d) = sl_u.value; \ } while (0) /* A union which permits us to convert between a float and a 32 bit int. */ typedef union { float value; u_int32_t word; } ieee_float_shape_type; /* Get a 32 bit int from a float. */ #define GET_FLOAT_WORD(i,d) \ do { \ ieee_float_shape_type gf_u; \ gf_u.value = (d); \ (i) = gf_u.word; \ } while (0) /* Set a float from a 32 bit int. */ #define SET_FLOAT_WORD(d,i) \ do { \ ieee_float_shape_type sf_u; \ sf_u.word = (i); \ (d) = sf_u.value; \ } while (0) /* ieee style elementary functions */ extern double __ieee754_sqrt(double) attribute_hidden; extern double __ieee754_acos(double) attribute_hidden; extern double __ieee754_acosh(double) attribute_hidden; extern double __ieee754_log(double) attribute_hidden; extern double __ieee754_atanh(double) attribute_hidden; extern double __ieee754_asin(double) attribute_hidden; extern double __ieee754_atan2(double, double) attribute_hidden; extern double __ieee754_exp(double) attribute_hidden; extern double __ieee754_cosh(double) attribute_hidden; extern double __ieee754_fmod(double, double) attribute_hidden; extern double __ieee754_pow(double, double) attribute_hidden; extern double __ieee754_lgamma_r(double, int *) attribute_hidden; extern double __ieee754_gamma_r(double, int *) attribute_hidden; extern double __ieee754_lgamma(double) attribute_hidden; extern double __ieee754_gamma(double) attribute_hidden; extern double __ieee754_log10(double) attribute_hidden; extern double __ieee754_sinh(double) attribute_hidden; extern double __ieee754_hypot(double, double) attribute_hidden; extern double __ieee754_j0(double) attribute_hidden; extern double __ieee754_j1(double) attribute_hidden; extern double __ieee754_y0(double) attribute_hidden; extern double __ieee754_y1(double) attribute_hidden; extern double __ieee754_jn(int, double) attribute_hidden; extern double __ieee754_yn(int, double) attribute_hidden; extern double __ieee754_remainder(double, double) attribute_hidden; extern int __ieee754_rem_pio2(double, double *) attribute_hidden; #if defined(_SCALB_INT) extern double __ieee754_scalb(double, int) attribute_hidden; #else extern double __ieee754_scalb(double, double) attribute_hidden; #endif /* fdlibm kernel function */ #ifndef _IEEE_LIBM extern double __kernel_standard(double, double, int) attribute_hidden; #endif extern double __kernel_sin(double, double, int) attribute_hidden; extern double __kernel_cos(double, double) attribute_hidden; extern double __kernel_tan(double, double, int) attribute_hidden; extern int __kernel_rem_pio2(double *, double *, int, int, int, const int *) attribute_hidden; #endif /* _MATH_PRIVATE_H_ */