Mercurial > sdl-ios-xcode
view docs/man3/SDL_PixelFormat.3 @ 1212:7663bb0f52c7
To: sdl@libsdl.org
From: Christian Walther <cwalther@gmx.ch>
Date: Thu, 15 Dec 2005 21:19:53 +0100
Subject: [SDL] More mouse enhancements for Mac OS X
The attached patch brings two more enhancements to mouse handling on Mac
OS X (Quartz):
1. Currently, after launching an SDL application, SDL's notion of the
mouse position is stuck in the top left corner (0,0) until the first
time the mouse is moved. That's because the UpdateMouse() function isn't
implemented in the Quartz driver. This patch adds it.
2. When grabbing input while the mouse cursor is hidden, the function
CGAssociateMouseAndMouseCursorPosition(0) is called, which prevents the
system's notion of the mouse location from moving (and therefore leaving
the SDL window) even when the mouse is moved. However, apparently the
Wacom tablet driver (and maybe other special pointing device drivers)
doesn't care about that setting and still allows the mouse location to
go outside of the window. Interestingly, the system cursor, which is
made visible by the existing code in SDL in that case, does not follow
the mouse location, but appears in the middle of the SDL window. The
mouse location being outside of the window however means that mouse
button events go to background applications (or the dock or whatever is
there), which is very confusing to the user who sees no cursor outside
of the SDL window.
I have not found any way of intercepting these events (and that's
probably by design, as "normal" applications shouldn't prevent the user
from bringing other applications' windows to the front by clicking on
them). An idea would be placing a fully transparent, screen-filling
window in front of everything, but I fear that this might affect
rendering performance (by doing unnecessary compositing, using up
memory, or whatever).
The deluxe solution to the problem would be talking to the tablet
driver using AppleEvents to tell it to constrain its mapped area to the
window (see Wacom's "TabletEventDemo" sample app,
http://www.wacomeng.com/devsupport/mac/downloads.html), but I think that
the bloat that solution would add to SDL would outweigh its usefulness.
What I did instead in my patch is reassociating mouse and cursor when
the mouse leaves the window while an invisible grab is in effect, and
restoring the grab when the window is entered. That way, the grab can
still be effectively broken by a tablet, but at least it's obvious to
the user that it is broken. That change is minimal - it doesn't affect
operation with a mouse (or a trackpad), and the code that it adds is not
executed on every PumpEvents() call, only when entering and leaving the
window.
Unless there are any concerns about the patch, please apply. Feel free
to shorten the lengthy comment in SDL_QuartzEvents.m if you think it's
too verbose.
Thanks
-Christian
author | Ryan C. Gordon <icculus@icculus.org> |
---|---|
date | Mon, 02 Jan 2006 00:31:00 +0000 |
parents | e5bc29de3f0a |
children | e867f327aa54 |
line wrap: on
line source
.TH "SDL_PixelFormat" "3" "Tue 11 Sep 2001, 23:01" "SDL" "SDL API Reference" .SH "NAME" SDL_PixelFormat\- Stores surface format information .SH "STRUCTURE DEFINITION" .PP .nf \f(CWtypedef struct{ SDL_Palette *palette; Uint8 BitsPerPixel; Uint8 BytesPerPixel; Uint32 Rmask, Gmask, Bmask, Amask; Uint8 Rshift, Gshift, Bshift, Ashift; Uint8 Rloss, Gloss, Bloss, Aloss; Uint32 colorkey; Uint8 alpha; } SDL_PixelFormat;\fR .fi .PP .SH "STRUCTURE DATA" .TP 20 \fBpalette\fR Pointer to the \fIpalette\fR, or \fBNULL\fP if the \fBBitsPerPixel\fR>8 .TP 20 \fBBitsPerPixel\fR The number of bits used to represent each pixel in a surface\&. Usually 8, 16, 24 or 32\&. .TP 20 \fBBytesPerPixel\fR The number of bytes used to represent each pixel in a surface\&. Usually one to four\&. .TP 20 \fB[RGBA]mask\fR Binary mask used to retrieve individual color values .TP 20 \fB[RGBA]loss\fR Precision loss of each color component (2^[RGBA]loss) .TP 20 \fB[RGBA]shift\fR Binary left shift of each color component in the pixel value .TP 20 \fBcolorkey\fR Pixel value of transparent pixels .TP 20 \fBalpha\fR Overall surface alpha value .SH "DESCRIPTION" .PP A \fBSDL_PixelFormat\fR describes the format of the pixel data stored at the \fBpixels\fR field of a \fI\fBSDL_Surface\fR\fR\&. Every surface stores a \fBSDL_PixelFormat\fR in the \fBformat\fR field\&. .PP If you wish to do pixel level modifications on a surface, then understanding how SDL stores its color information is essential\&. .PP 8-bit pixel formats are the easiest to understand\&. Since its an 8-bit format, we have 8 \fBBitsPerPixel\fR and 1 \fBBytesPerPixel\fR\&. Since \fBBytesPerPixel\fR is 1, all pixels are represented by a Uint8 which contains an index into \fBpalette\fR->\fBcolors\fR\&. So, to determine the color of a pixel in a 8-bit surface: we read the color index from \fBsurface\fR->\fBpixels\fR and we use that index to read the \fI\fBSDL_Color\fR\fR structure from \fBsurface\fR->\fBformat\fR->\fBpalette\fR->\fBcolors\fR\&. Like so: .PP .nf \f(CWSDL_Surface *surface; SDL_PixelFormat *fmt; SDL_Color *color; Uint8 index; \&. \&. /* Create surface */ \&. \&. fmt=surface->format; /* Check the bitdepth of the surface */ if(fmt->BitsPerPixel!=8){ fprintf(stderr, "Not an 8-bit surface\&. "); return(-1); } /* Lock the surface */ SDL_LockSurface(surface); /* Get the topleft pixel */ index=*(Uint8 *)surface->pixels; color=fmt->palette->colors[index]; /* Unlock the surface */ SDL_UnlockSurface(surface); printf("Pixel Color-> Red: %d, Green: %d, Blue: %d\&. Index: %d ", color->r, color->g, color->b, index); \&. \&.\fR .fi .PP .PP Pixel formats above 8-bit are an entirely different experience\&. They are considered to be "TrueColor" formats and the color information is stored in the pixels themselves, not in a palette\&. The mask, shift and loss fields tell us how the color information is encoded\&. The mask fields allow us to isolate each color component, the shift fields tell us the number of bits to the right of each component in the pixel value and the loss fields tell us the number of bits lost from each component when packing 8-bit color component in a pixel\&. .PP .nf \f(CW/* Extracting color components from a 32-bit color value */ SDL_PixelFormat *fmt; SDL_Surface *surface; Uint32 temp, pixel; Uint8 red, green, blue, alpha; \&. \&. \&. fmt=surface->format; SDL_LockSurface(surface); pixel=*((Uint32*)surface->pixels); SDL_UnlockSurface(surface); /* Get Red component */ temp=pixel&fmt->Rmask; /* Isolate red component */ temp=temp>>fmt->Rshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Rloss; /* Expand to a full 8-bit number */ red=(Uint8)temp; /* Get Green component */ temp=pixel&fmt->Gmask; /* Isolate green component */ temp=temp>>fmt->Gshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Gloss; /* Expand to a full 8-bit number */ green=(Uint8)temp; /* Get Blue component */ temp=pixel&fmt->Bmask; /* Isolate blue component */ temp=temp>>fmt->Bshift;/* Shift it down to 8-bit */ temp=temp<<fmt->Bloss; /* Expand to a full 8-bit number */ blue=(Uint8)temp; /* Get Alpha component */ temp=pixel&fmt->Amask; /* Isolate alpha component */ temp=temp>>fmt->Ashift;/* Shift it down to 8-bit */ temp=temp<<fmt->Aloss; /* Expand to a full 8-bit number */ alpha=(Uint8)temp; printf("Pixel Color -> R: %d, G: %d, B: %d, A: %d ", red, green, blue, alpha); \&. \&. \&.\fR .fi .PP .SH "SEE ALSO" .PP \fI\fBSDL_Surface\fR\fR, \fI\fBSDL_MapRGB\fP\fR ...\" created by instant / docbook-to-man, Tue 11 Sep 2001, 23:01