view src/libm/k_sin.c @ 2763:6fc50bdd88c0

Some cleanups on the new XInput code. One or two things got moved around, but largely this is hooked up correctly in the Unix configure system now: it can be dynamically loaded and fallback gracefully if not available, or libXi can be directly linked to libSDL. XInput support can be --disable'd from the configure script, too (defaults to enabled). Please note that while the framework is in place to gracefully fallback, the current state of the source requires XInput. We'll need to adjust a few things still to correct this.
author Ryan C. Gordon <icculus@icculus.org>
date Wed, 17 Sep 2008 08:20:57 +0000
parents a98604b691c8
children dc1eb82ffdaa
line wrap: on
line source

/* @(#)k_sin.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
#endif

/* __kernel_sin( x, y, iy)
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *	3. sin(x) is approximated by a polynomial of degree 13 on
 *	   [0,pi/4]
 *		  	         3            13
 *	   	sin(x) ~ x + S1*x + ... + S6*x
 *	   where
 *
 * 	|sin(x)         2     4     6     8     10     12  |     -58
 * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 * 	|  x 					           |
 *
 *	4. sin(x+y) = sin(x) + sin'(x')*y
 *		    ~ sin(x) + (1-x*x/2)*y
 *	   For better accuracy, let
 *		     3      2      2      2      2
 *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *	   then                   3    2
 *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
 */

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
  half = 5.00000000000000000000e-01,    /* 0x3FE00000, 0x00000000 */
    S1 = -1.66666666666666324348e-01,   /* 0xBFC55555, 0x55555549 */
    S2 = 8.33333333332248946124e-03,    /* 0x3F811111, 0x1110F8A6 */
    S3 = -1.98412698298579493134e-04,   /* 0xBF2A01A0, 0x19C161D5 */
    S4 = 2.75573137070700676789e-06,    /* 0x3EC71DE3, 0x57B1FE7D */
    S5 = -2.50507602534068634195e-08,   /* 0xBE5AE5E6, 0x8A2B9CEB */
    S6 = 1.58969099521155010221e-10;    /* 0x3DE5D93A, 0x5ACFD57C */

#ifdef __STDC__
double attribute_hidden
__kernel_sin(double x, double y, int iy)
#else
double attribute_hidden
__kernel_sin(x, y, iy)
     double x, y;
     int iy;                    /* iy=0 if y is zero */
#endif
{
    double z, r, v;
    int32_t ix;
    GET_HIGH_WORD(ix, x);
    ix &= 0x7fffffff;           /* high word of x */
    if (ix < 0x3e400000) {      /* |x| < 2**-27 */
        if ((int) x == 0)
            return x;
    }                           /* generate inexact */
    z = x * x;
    v = z * x;
    r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
    if (iy == 0)
        return x + v * (S1 + z * r);
    else
        return x - ((z * (half * y - v * r) - y) - v * S1);
}