view src/audio/dc/SDL_dcaudio.c @ 4384:6800e2560310 SDL-1.2

Fixed bugs #882 and 865, re-opening bug #634 Ronald Lamprecht to SDL Hi, Sam Lantinga wrote: The problem with that fix is that it breaks IME events again. Maybe we can handle keyboard events differently to prevent this issue? Spending an hour reading MSDN, analysing SDL and another hour testing the reality on XP I am really wondering how patch r4990 could have ever worked in any situation. It's main effect is to break the unicode translation and causing spurious activation events! Why does TranslateMessage(&msg) nothing useful? Simply because it does not affect "msg" at all! All keyboard events are dispatched without the slightest change (see MSDN). TranslateMessage() just appends additional WM_CHAR, WM_DEADCHAR, WM_SYSCHAR, WM_SYSDEADCHAR event messages to the queue. But I could not find any SDL event handling routine that catches these events and transforms them to proper SDL keyevents while eliminating the corresponding WM_KEYDOWN, etc. events. Thus any IME input like the '@' generated by "Alt + 6(Numpad) + 4(Numpad)" is simply lost. But the situation is even worse! Up to r4990 the TranslateKey()/ToUnicode() calls did evaluate dead keys and did deliver proper key events for subsequent key strokes like '´' + 'e' resulting in 'é'. ToUnicode() needs proper key state informations to be able to handle these substitutions. But unfortunatly TranslateMessage() needs the same state information and eats it up while generating the WM_CHAR messages :-( Thus the current 1.2.14 breakes the partial IME support of previous releases, too. The key state race condition between ToUnicode() and TranslateMessage() requires to avoid any ToUnicode() usage for receiving proper WM_CHAR, etc. messages generated by TranslateMessage(). (Yes - the '@' and 'é' appear as WM_CHAR messages when unicode is switched off). The spurious SDL activation events are *not* caused by additional WM_ACTIVATE Windows messages! Besides DIB_HandleMessage() SDL_PrivateAppActive() is called by another source which I am not yet aware of - any hints? Thus I do strongly recommend the deletion of the TranslateMessage(&msg) call as a quick fix. A proper support of unicode and IME requires a clean SDL keyboard input concept first. Which SDL keyboards events should be transmitted to the app when the user presses '´' + 'e' ? Within the current unicode handling the first key stroke is hidden. Even though ToUnicode() delivers the proper key SDL does ignore it in TranslateKey(). Just the composed key event is transmitted to the app. That is what you expect for text input, but the app can no longer use keys like '^' as a key button because it will never receive a key event for it! With a given concept it seems to be necessary to regenerate SDL key events out of the WM_CHAR, etc. events and to drop all related direct WM_KEYDOWN, etc. events while the remaining basic WM_KEYDOWN, etc. events would still have to result in SDL key events. Anyway the source of the spurious WM_ACTIVATE should be located to avoid future trouble. Greets, Ronald
author Sam Lantinga <slouken@libsdl.org>
date Tue, 17 Nov 2009 04:59:13 +0000
parents a1b03ba2fcd0
children
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2009 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with this library; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA

    Sam Lantinga
    slouken@libsdl.org

*/
#include "SDL_config.h"

/* Output dreamcast aica */

#include "SDL_timer.h"
#include "SDL_audio.h"
#include "../SDL_audiomem.h"
#include "../SDL_audio_c.h"
#include "../SDL_audiodev_c.h"
#include "SDL_dcaudio.h"

#include "aica.h"
#include <dc/spu.h>

/* Audio driver functions */
static int DCAUD_OpenAudio(_THIS, SDL_AudioSpec *spec);
static void DCAUD_WaitAudio(_THIS);
static void DCAUD_PlayAudio(_THIS);
static Uint8 *DCAUD_GetAudioBuf(_THIS);
static void DCAUD_CloseAudio(_THIS);

/* Audio driver bootstrap functions */
static int DCAUD_Available(void)
{
	return 1;
}

static void DCAUD_DeleteDevice(SDL_AudioDevice *device)
{
	SDL_free(device->hidden);
	SDL_free(device);
}

static SDL_AudioDevice *DCAUD_CreateDevice(int devindex)
{
	SDL_AudioDevice *this;

	/* Initialize all variables that we clean on shutdown */
	this = (SDL_AudioDevice *)SDL_malloc(sizeof(SDL_AudioDevice));
	if ( this ) {
		SDL_memset(this, 0, (sizeof *this));
		this->hidden = (struct SDL_PrivateAudioData *)
				SDL_malloc((sizeof *this->hidden));
	}
	if ( (this == NULL) || (this->hidden == NULL) ) {
		SDL_OutOfMemory();
		if ( this ) {
			SDL_free(this);
		}
		return(0);
	}
	SDL_memset(this->hidden, 0, (sizeof *this->hidden));

	/* Set the function pointers */
	this->OpenAudio = DCAUD_OpenAudio;
	this->WaitAudio = DCAUD_WaitAudio;
	this->PlayAudio = DCAUD_PlayAudio;
	this->GetAudioBuf = DCAUD_GetAudioBuf;
	this->CloseAudio = DCAUD_CloseAudio;

	this->free = DCAUD_DeleteDevice;

	spu_init();

	return this;
}

AudioBootStrap DCAUD_bootstrap = {
	"dcaudio", "Dreamcast AICA audio",
	DCAUD_Available, DCAUD_CreateDevice
};

/* This function waits until it is possible to write a full sound buffer */
static void DCAUD_WaitAudio(_THIS)
{
	if (this->hidden->playing) {
		/* wait */
		while(aica_get_pos(0)/this->spec.samples == this->hidden->nextbuf) {
			thd_pass();
		}
	}
}

#define	SPU_RAM_BASE	0xa0800000

static void spu_memload_stereo8(int leftpos,int rightpos,void *src0,size_t size)
{
	uint8 *src = src0;
	uint32 *left  = (uint32*)(leftpos +SPU_RAM_BASE);
	uint32 *right = (uint32*)(rightpos+SPU_RAM_BASE);
	size = (size+7)/8;
	while(size--) {
		unsigned lval,rval;
		lval = *src++;
		rval = *src++;
		lval|= (*src++)<<8;
		rval|= (*src++)<<8;
		lval|= (*src++)<<16;
		rval|= (*src++)<<16;
		lval|= (*src++)<<24;
		rval|= (*src++)<<24;
		g2_write_32(left++,lval);
		g2_write_32(right++,rval);
		g2_fifo_wait();
	}
}

static void spu_memload_stereo16(int leftpos,int rightpos,void *src0,size_t size)
{
	uint16 *src = src0;
	uint32 *left  = (uint32*)(leftpos +SPU_RAM_BASE);
	uint32 *right = (uint32*)(rightpos+SPU_RAM_BASE);
	size = (size+7)/8;
	while(size--) {
		unsigned lval,rval;
		lval = *src++;
		rval = *src++;
		lval|= (*src++)<<16;
		rval|= (*src++)<<16;
		g2_write_32(left++,lval);
		g2_write_32(right++,rval);
		g2_fifo_wait();
	}
}

static void DCAUD_PlayAudio(_THIS)
{
	SDL_AudioSpec *spec = &this->spec;
	unsigned int offset;

	if (this->hidden->playing) {
		/* wait */
		while(aica_get_pos(0)/spec->samples == this->hidden->nextbuf) {
			thd_pass();
		}
	}

	offset = this->hidden->nextbuf*spec->size;
	this->hidden->nextbuf^=1;
	/* Write the audio data, checking for EAGAIN on broken audio drivers */
	if (spec->channels==1) {
		spu_memload(this->hidden->leftpos+offset,this->hidden->mixbuf,this->hidden->mixlen);
	} else {
		offset/=2;
		if ((this->spec.format&255)==8) {
			spu_memload_stereo8(this->hidden->leftpos+offset,this->hidden->rightpos+offset,this->hidden->mixbuf,this->hidden->mixlen);
		} else {
			spu_memload_stereo16(this->hidden->leftpos+offset,this->hidden->rightpos+offset,this->hidden->mixbuf,this->hidden->mixlen);
		}
	}

	if (!this->hidden->playing) {
		int mode;
		this->hidden->playing = 1;
		mode = (spec->format==AUDIO_S8)?SM_8BIT:SM_16BIT;
		if (spec->channels==1) {
			aica_play(0,mode,this->hidden->leftpos,0,spec->samples*2,spec->freq,255,128,1);
		} else {
			aica_play(0,mode,this->hidden->leftpos ,0,spec->samples*2,spec->freq,255,0,1);
			aica_play(1,mode,this->hidden->rightpos,0,spec->samples*2,spec->freq,255,255,1);
		}
	}
}

static Uint8 *DCAUD_GetAudioBuf(_THIS)
{
	return(this->hidden->mixbuf);
}

static void DCAUD_CloseAudio(_THIS)
{
	aica_stop(0);
	if (this->spec.channels==2) aica_stop(1);
	if ( this->hidden->mixbuf != NULL ) {
		SDL_FreeAudioMem(this->hidden->mixbuf);
		this->hidden->mixbuf = NULL;
	}
}

static int DCAUD_OpenAudio(_THIS, SDL_AudioSpec *spec)
{
    Uint16 test_format = SDL_FirstAudioFormat(spec->format);
    int valid_datatype = 0;
    while ((!valid_datatype) && (test_format)) {
        spec->format = test_format;
        switch (test_format) {
            /* only formats Dreamcast accepts... */
            case AUDIO_S8:
            case AUDIO_S16LSB:
                valid_datatype = 1;
                break;

            default:
                test_format = SDL_NextAudioFormat();
                break;
        }
    }

    if (!valid_datatype) {  /* shouldn't happen, but just in case... */
        SDL_SetError("Unsupported audio format");
        return (-1);
    }

    if (spec->channels > 2)
        spec->channels = 2;  /* no more than stereo on the Dreamcast. */

	/* Update the fragment size as size in bytes */
	SDL_CalculateAudioSpec(spec);

	/* Allocate mixing buffer */
	this->hidden->mixlen = spec->size;
	this->hidden->mixbuf = (Uint8 *) SDL_AllocAudioMem(this->hidden->mixlen);
	if ( this->hidden->mixbuf == NULL ) {
		return(-1);
	}
	SDL_memset(this->hidden->mixbuf, spec->silence, spec->size);
	this->hidden->leftpos = 0x11000;
	this->hidden->rightpos = 0x11000+spec->size;
	this->hidden->playing = 0;
	this->hidden->nextbuf = 0;

	/* We're ready to rock and roll. :-) */
	return(0);
}