Mercurial > sdl-ios-xcode
view src/video/ps3/spulibs/bilin_scaler.c @ 4382:6599c89de50c SDL-1.2
Forgot a check for Coldfire CPU
author | Patrice Mandin <patmandin@gmail.com> |
---|---|
date | Mon, 09 Nov 2009 18:02:32 +0000 |
parents | 3b8ac3d311a2 |
children |
line wrap: on
line source
/* * SDL - Simple DirectMedia Layer * CELL BE Support for PS3 Framebuffer * Copyright (C) 2008, 2009 International Business Machines Corporation * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 * USA * * Martin Lowinski <lowinski [at] de [dot] ibm [ibm] com> * Dirk Herrendoerfer <d.herrendoerfer [at] de [dot] ibm [dot] com> * SPE code based on research by: * Rene Becker * Thimo Emmerich */ #include "spu_common.h" #include <spu_intrinsics.h> #include <spu_mfcio.h> // Debugging //#define DEBUG #ifdef DEBUG #define deprintf(fmt, args... ) \ fprintf( stdout, fmt, ##args ); \ fflush( stdout ); #else #define deprintf( fmt, args... ) #endif struct scale_parms_t parms __attribute__((aligned(128))); /* A maximum of 8 lines Y, therefore 4 lines V, 4 lines U are stored * there might be the need to retrieve misaligned data, adjust * incoming v and u plane to be able to handle this (add 128) */ unsigned char y_plane[2][(MAX_HDTV_WIDTH+128)*4] __attribute__((aligned(128))); unsigned char v_plane[2][(MAX_HDTV_WIDTH+128)*2] __attribute__((aligned(128))); unsigned char u_plane[2][(MAX_HDTV_WIDTH+128)*2] __attribute__((aligned(128))); /* temp-buffer for scaling: 4 lines Y, therefore 2 lines V, 2 lines U */ unsigned char scaled_y_plane[2][MAX_HDTV_WIDTH*2] __attribute__((aligned(128))); unsigned char scaled_v_plane[2][MAX_HDTV_WIDTH/2] __attribute__((aligned(128))); unsigned char scaled_u_plane[2][MAX_HDTV_WIDTH/2] __attribute__((aligned(128))); /* some vectors needed by the float to int conversion */ static const vector float vec_255 = { 255.0f, 255.0f, 255.0f, 255.0f }; static const vector float vec_0_1 = { 0.1f, 0.1f, 0.1f, 0.1f }; void bilinear_scale_line_w8(unsigned char* src, unsigned char* dst_, unsigned int dst_width, vector float vf_x_scale, vector float vf_NSweight, unsigned int src_linestride); void bilinear_scale_line_w16(unsigned char* src, unsigned char* dst_, unsigned int dst_width, vector float vf_x_scale, vector float vf_NSweight, unsigned int src_linestride); void scale_srcw16_dstw16(); void scale_srcw16_dstw32(); void scale_srcw32_dstw16(); void scale_srcw32_dstw32(); int main( unsigned long long spe_id __attribute__((unused)), unsigned long long argp ) { deprintf("[SPU] bilin_scaler_spu is up... (on SPE #%llu)\n", spe_id); /* DMA transfer for the input parameters */ spu_mfcdma32(&parms, (unsigned int)argp, sizeof(struct scale_parms_t), TAG_INIT, MFC_GET_CMD); DMA_WAIT_TAG(TAG_INIT); deprintf("[SPU] Scale %ux%u to %ux%u\n", parms.src_pixel_width, parms.src_pixel_height, parms.dst_pixel_width, parms.dst_pixel_height); if(parms.src_pixel_width & 0x1f) { if(parms.dst_pixel_width & 0x1F) { deprintf("[SPU] Using scale_srcw16_dstw16\n"); scale_srcw16_dstw16(); } else { deprintf("[SPU] Using scale_srcw16_dstw32\n"); scale_srcw16_dstw32(); } } else { if(parms.dst_pixel_width & 0x1F) { deprintf("[SPU] Using scale_srcw32_dstw16\n"); scale_srcw32_dstw16(); } else { deprintf("[SPU] Using scale_srcw32_dstw32\n"); scale_srcw32_dstw32(); } } deprintf("[SPU] bilin_scaler_spu... done!\n"); return 0; } /* * vfloat_to_vuint() * * converts a float vector to an unsinged int vector using saturated * arithmetic * * @param vec_s float vector for conversion * @returns converted unsigned int vector */ inline static vector unsigned int vfloat_to_vuint(vector float vec_s) { vector unsigned int select_1 = spu_cmpgt(vec_0_1, vec_s); vec_s = spu_sel(vec_s, vec_0_1, select_1); vector unsigned int select_2 = spu_cmpgt(vec_s, vec_255); vec_s = spu_sel(vec_s, vec_255, select_2); return spu_convtu(vec_s,0); } /* * scale_srcw16_dstw16() * * processes an input image of width 16 * scaling is done to a width 16 * result stored in RAM */ void scale_srcw16_dstw16() { // extract parameters unsigned char* dst_addr = (unsigned char *)parms.dstBuffer; unsigned int src_width = parms.src_pixel_width; unsigned int src_height = parms.src_pixel_height; unsigned int dst_width = parms.dst_pixel_width; unsigned int dst_height = parms.dst_pixel_height; // YVU unsigned int src_linestride_y = src_width; unsigned int src_dbl_linestride_y = src_width<<1; unsigned int src_linestride_vu = src_width>>1; unsigned int src_dbl_linestride_vu = src_width; // scaled YVU unsigned int scaled_src_linestride_y = dst_width; // ram addresses unsigned char* src_addr_y = parms.y_plane; unsigned char* src_addr_v = parms.v_plane; unsigned char* src_addr_u = parms.u_plane; // for handling misalignment, addresses are precalculated unsigned char* precalc_src_addr_v = src_addr_v; unsigned char* precalc_src_addr_u = src_addr_u; unsigned int dst_picture_size = dst_width*dst_height; // Sizes for destination unsigned int dst_dbl_linestride_y = dst_width<<1; unsigned int dst_dbl_linestride_vu = dst_width>>1; // Perform address calculation for Y, V and U in main memory with dst_addr as base unsigned char* dst_addr_main_memory_y = dst_addr; unsigned char* dst_addr_main_memory_v = dst_addr + dst_picture_size; unsigned char* dst_addr_main_memory_u = dst_addr_main_memory_v +(dst_picture_size>>2); // calculate scale factors vector float vf_x_scale = spu_splats( (float)src_width/(float)dst_width ); float y_scale = (float)src_height/(float)dst_height; // double buffered processing // buffer switching unsigned int curr_src_idx = 0; unsigned int curr_dst_idx = 0; unsigned int next_src_idx, next_dst_idx; // 2 lines y as output, upper and lowerline unsigned int curr_interpl_y_upper = 0; unsigned int next_interpl_y_upper; unsigned int curr_interpl_y_lower, next_interpl_y_lower; // only 1 line v/u output, both planes have the same dimension unsigned int curr_interpl_vu = 0; unsigned int next_interpl_vu; // weights, calculated in every loop iteration vector float vf_curr_NSweight_y_upper = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_y_upper; vector float vf_curr_NSweight_y_lower, vf_next_NSweight_y_lower; vector float vf_curr_NSweight_vu = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_vu; // line indices for the src picture float curr_src_y_upper = 0.0f, next_src_y_upper; float curr_src_y_lower, next_src_y_lower; float curr_src_vu = 0.0f, next_src_vu; // line indices for the dst picture unsigned int dst_y=0, dst_vu=0; // offset for the v and u plane to handle misalignement unsigned int curr_lsoff_v = 0, next_lsoff_v; unsigned int curr_lsoff_u = 0, next_lsoff_u; // calculate lower line indices curr_src_y_lower = ((float)curr_interpl_y_upper+1)*y_scale; curr_interpl_y_lower = (unsigned int)curr_src_y_lower; // lower line weight vf_curr_NSweight_y_lower = spu_splats( curr_src_y_lower-(float)curr_interpl_y_lower ); // start partially double buffered processing // get initial data, 2 sets of y, 1 set v, 1 set u mfc_get( y_plane[curr_src_idx], (unsigned int) src_addr_y, src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( y_plane[curr_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(curr_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( v_plane[curr_src_idx], (unsigned int) src_addr_v, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); mfc_get( u_plane[curr_src_idx], (unsigned int) src_addr_u, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); /* iteration loop * within each iteration 4 lines y, 2 lines v, 2 lines u are retrieved * the scaled output is 2 lines y, 1 line v, 1 line u * the yuv2rgb-converted output is stored to RAM */ for( dst_vu=0; dst_vu<(dst_height>>1)-1; dst_vu++ ) { dst_y = dst_vu<<1; // calculate next indices next_src_vu = ((float)dst_vu+1)*y_scale; next_src_y_upper = ((float)dst_y+2)*y_scale; next_src_y_lower = ((float)dst_y+3)*y_scale; next_interpl_vu = (unsigned int) next_src_vu; next_interpl_y_upper = (unsigned int) next_src_y_upper; next_interpl_y_lower = (unsigned int) next_src_y_lower; // calculate weight NORTH-SOUTH vf_next_NSweight_vu = spu_splats( next_src_vu-(float)next_interpl_vu ); vf_next_NSweight_y_upper = spu_splats( next_src_y_upper-(float)next_interpl_y_upper ); vf_next_NSweight_y_lower = spu_splats( next_src_y_lower-(float)next_interpl_y_lower ); // get next lines next_src_idx = curr_src_idx^1; next_dst_idx = curr_dst_idx^1; // 4 lines y mfc_get( y_plane[next_src_idx], (unsigned int) src_addr_y+(next_interpl_y_upper*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); mfc_get( y_plane[next_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(next_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines v precalc_src_addr_v = src_addr_v+(next_interpl_vu*src_linestride_vu); next_lsoff_v = ((unsigned int)precalc_src_addr_v)&0x0F; mfc_get( v_plane[next_src_idx], ((unsigned int) precalc_src_addr_v)&0xFFFFFFF0, src_dbl_linestride_vu+(next_lsoff_v<<1), RETR_BUF+next_src_idx, 0, 0 ); // 2 lines u precalc_src_addr_u = src_addr_u+(next_interpl_vu*src_linestride_vu); next_lsoff_u = ((unsigned int)precalc_src_addr_u)&0x0F; mfc_get( u_plane[next_src_idx], ((unsigned int) precalc_src_addr_u)&0xFFFFFFF0, src_dbl_linestride_vu+(next_lsoff_v<<1), RETR_BUF+next_src_idx, 0, 0 ); DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w8( v_plane[curr_src_idx]+curr_lsoff_v, scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w8( u_plane[curr_src_idx]+curr_lsoff_u, scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // Store the result back to main memory into a destination buffer in YUV format //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); //--------------------------------------------------------------------------------------------- // update for next cycle curr_src_idx = next_src_idx; curr_dst_idx = next_dst_idx; curr_interpl_y_upper = next_interpl_y_upper; curr_interpl_y_lower = next_interpl_y_lower; curr_interpl_vu = next_interpl_vu; vf_curr_NSweight_y_upper = vf_curr_NSweight_y_upper; vf_curr_NSweight_y_lower = vf_curr_NSweight_y_lower; vf_curr_NSweight_vu = vf_next_NSweight_vu; curr_src_y_upper = next_src_y_upper; curr_src_y_lower = next_src_y_lower; curr_src_vu = next_src_vu; curr_lsoff_v = next_lsoff_v; curr_lsoff_u = next_lsoff_u; } DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w8( v_plane[curr_src_idx]+curr_lsoff_v, scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w8( u_plane[curr_src_idx]+curr_lsoff_u, scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // Store the result back to main memory into a destination buffer in YUV format //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int)dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); // wait for completion DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); //--------------------------------------------------------------------------------------------- } /* * scale_srcw16_dstw32() * * processes an input image of width 16 * scaling is done to a width 32 * yuv2rgb conversion on a width of 32 * result stored in RAM */ void scale_srcw16_dstw32() { // extract parameters unsigned char* dst_addr = (unsigned char *)parms.dstBuffer; unsigned int src_width = parms.src_pixel_width; unsigned int src_height = parms.src_pixel_height; unsigned int dst_width = parms.dst_pixel_width; unsigned int dst_height = parms.dst_pixel_height; // YVU unsigned int src_linestride_y = src_width; unsigned int src_dbl_linestride_y = src_width<<1; unsigned int src_linestride_vu = src_width>>1; unsigned int src_dbl_linestride_vu = src_width; // scaled YVU unsigned int scaled_src_linestride_y = dst_width; // ram addresses unsigned char* src_addr_y = parms.y_plane; unsigned char* src_addr_v = parms.v_plane; unsigned char* src_addr_u = parms.u_plane; unsigned int dst_picture_size = dst_width*dst_height; // Sizes for destination unsigned int dst_dbl_linestride_y = dst_width<<1; unsigned int dst_dbl_linestride_vu = dst_width>>1; // Perform address calculation for Y, V and U in main memory with dst_addr as base unsigned char* dst_addr_main_memory_y = dst_addr; unsigned char* dst_addr_main_memory_v = dst_addr + dst_picture_size; unsigned char* dst_addr_main_memory_u = dst_addr_main_memory_v +(dst_picture_size>>2); // for handling misalignment, addresses are precalculated unsigned char* precalc_src_addr_v = src_addr_v; unsigned char* precalc_src_addr_u = src_addr_u; // calculate scale factors vector float vf_x_scale = spu_splats( (float)src_width/(float)dst_width ); float y_scale = (float)src_height/(float)dst_height; // double buffered processing // buffer switching unsigned int curr_src_idx = 0; unsigned int curr_dst_idx = 0; unsigned int next_src_idx, next_dst_idx; // 2 lines y as output, upper and lowerline unsigned int curr_interpl_y_upper = 0; unsigned int next_interpl_y_upper; unsigned int curr_interpl_y_lower, next_interpl_y_lower; // only 1 line v/u output, both planes have the same dimension unsigned int curr_interpl_vu = 0; unsigned int next_interpl_vu; // weights, calculated in every loop iteration vector float vf_curr_NSweight_y_upper = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_y_upper; vector float vf_curr_NSweight_y_lower, vf_next_NSweight_y_lower; vector float vf_curr_NSweight_vu = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_vu; // line indices for the src picture float curr_src_y_upper = 0.0f, next_src_y_upper; float curr_src_y_lower, next_src_y_lower; float curr_src_vu = 0.0f, next_src_vu; // line indices for the dst picture unsigned int dst_y=0, dst_vu=0; // offset for the v and u plane to handle misalignement unsigned int curr_lsoff_v = 0, next_lsoff_v; unsigned int curr_lsoff_u = 0, next_lsoff_u; // calculate lower line idices curr_src_y_lower = ((float)curr_interpl_y_upper+1)*y_scale; curr_interpl_y_lower = (unsigned int)curr_src_y_lower; // lower line weight vf_curr_NSweight_y_lower = spu_splats( curr_src_y_lower-(float)curr_interpl_y_lower ); // start partially double buffered processing // get initial data, 2 sets of y, 1 set v, 1 set u mfc_get( y_plane[curr_src_idx], (unsigned int) src_addr_y, src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( y_plane[curr_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(curr_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( v_plane[curr_src_idx], (unsigned int) src_addr_v, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); mfc_get( u_plane[curr_src_idx], (unsigned int) src_addr_u, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); // iteration loop // within each iteration 4 lines y, 2 lines v, 2 lines u are retrieved // the scaled output is 2 lines y, 1 line v, 1 line u // the yuv2rgb-converted output is stored to RAM for( dst_vu=0; dst_vu<(dst_height>>1)-1; dst_vu++ ) { dst_y = dst_vu<<1; // calculate next indices next_src_vu = ((float)dst_vu+1)*y_scale; next_src_y_upper = ((float)dst_y+2)*y_scale; next_src_y_lower = ((float)dst_y+3)*y_scale; next_interpl_vu = (unsigned int) next_src_vu; next_interpl_y_upper = (unsigned int) next_src_y_upper; next_interpl_y_lower = (unsigned int) next_src_y_lower; // calculate weight NORTH-SOUTH vf_next_NSweight_vu = spu_splats( next_src_vu-(float)next_interpl_vu ); vf_next_NSweight_y_upper = spu_splats( next_src_y_upper-(float)next_interpl_y_upper ); vf_next_NSweight_y_lower = spu_splats( next_src_y_lower-(float)next_interpl_y_lower ); // get next lines next_src_idx = curr_src_idx^1; next_dst_idx = curr_dst_idx^1; // 4 lines y mfc_get( y_plane[next_src_idx], (unsigned int) src_addr_y+(next_interpl_y_upper*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); mfc_get( y_plane[next_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(next_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines v precalc_src_addr_v = src_addr_v+(next_interpl_vu*src_linestride_vu); next_lsoff_v = ((unsigned int)precalc_src_addr_v)&0x0F; mfc_get( v_plane[next_src_idx], ((unsigned int) precalc_src_addr_v)&0xFFFFFFF0, src_dbl_linestride_vu+(next_lsoff_v<<1), RETR_BUF+next_src_idx, 0, 0 ); // 2 lines u precalc_src_addr_u = src_addr_u+(next_interpl_vu*src_linestride_vu); next_lsoff_u = ((unsigned int)precalc_src_addr_u)&0x0F; mfc_get( u_plane[next_src_idx], ((unsigned int) precalc_src_addr_u)&0xFFFFFFF0, src_dbl_linestride_vu+(next_lsoff_v<<1), RETR_BUF+next_src_idx, 0, 0 ); DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w8( v_plane[curr_src_idx]+curr_lsoff_v, scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w8( u_plane[curr_src_idx]+curr_lsoff_u, scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); //--------------------------------------------------------------------------------------------- // update for next cycle curr_src_idx = next_src_idx; curr_dst_idx = next_dst_idx; curr_interpl_y_upper = next_interpl_y_upper; curr_interpl_y_lower = next_interpl_y_lower; curr_interpl_vu = next_interpl_vu; vf_curr_NSweight_y_upper = vf_curr_NSweight_y_upper; vf_curr_NSweight_y_lower = vf_curr_NSweight_y_lower; vf_curr_NSweight_vu = vf_next_NSweight_vu; curr_src_y_upper = next_src_y_upper; curr_src_y_lower = next_src_y_lower; curr_src_vu = next_src_vu; curr_lsoff_v = next_lsoff_v; curr_lsoff_u = next_lsoff_u; } DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w8( v_plane[curr_src_idx]+curr_lsoff_v, scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w8( u_plane[curr_src_idx]+curr_lsoff_u, scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); // wait for completion DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); //--------------------------------------------------------------------------------------------- } /* * scale_srcw32_dstw16() * * processes an input image of width 32 * scaling is done to a width 16 * yuv2rgb conversion on a width of 16 * result stored in RAM */ void scale_srcw32_dstw16() { // extract parameters unsigned char* dst_addr = (unsigned char *)parms.dstBuffer; unsigned int src_width = parms.src_pixel_width; unsigned int src_height = parms.src_pixel_height; unsigned int dst_width = parms.dst_pixel_width; unsigned int dst_height = parms.dst_pixel_height; // YVU unsigned int src_linestride_y = src_width; unsigned int src_dbl_linestride_y = src_width<<1; unsigned int src_linestride_vu = src_width>>1; unsigned int src_dbl_linestride_vu = src_width; // scaled YVU unsigned int scaled_src_linestride_y = dst_width; // ram addresses unsigned char* src_addr_y = parms.y_plane; unsigned char* src_addr_v = parms.v_plane; unsigned char* src_addr_u = parms.u_plane; unsigned int dst_picture_size = dst_width*dst_height; // Sizes for destination unsigned int dst_dbl_linestride_y = dst_width<<1; unsigned int dst_dbl_linestride_vu = dst_width>>1; // Perform address calculation for Y, V and U in main memory with dst_addr as base unsigned char* dst_addr_main_memory_y = dst_addr; unsigned char* dst_addr_main_memory_v = dst_addr + dst_picture_size; unsigned char* dst_addr_main_memory_u = dst_addr_main_memory_v +(dst_picture_size>>2); // calculate scale factors vector float vf_x_scale = spu_splats( (float)src_width/(float)dst_width ); float y_scale = (float)src_height/(float)dst_height; // double buffered processing // buffer switching unsigned int curr_src_idx = 0; unsigned int curr_dst_idx = 0; unsigned int next_src_idx, next_dst_idx; // 2 lines y as output, upper and lowerline unsigned int curr_interpl_y_upper = 0; unsigned int next_interpl_y_upper; unsigned int curr_interpl_y_lower, next_interpl_y_lower; // only 1 line v/u output, both planes have the same dimension unsigned int curr_interpl_vu = 0; unsigned int next_interpl_vu; // weights, calculated in every loop iteration vector float vf_curr_NSweight_y_upper = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_y_upper; vector float vf_curr_NSweight_y_lower, vf_next_NSweight_y_lower; vector float vf_curr_NSweight_vu = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_vu; // line indices for the src picture float curr_src_y_upper = 0.0f, next_src_y_upper; float curr_src_y_lower, next_src_y_lower; float curr_src_vu = 0.0f, next_src_vu; // line indices for the dst picture unsigned int dst_y=0, dst_vu=0; // calculate lower line idices curr_src_y_lower = ((float)curr_interpl_y_upper+1)*y_scale; curr_interpl_y_lower = (unsigned int)curr_src_y_lower; // lower line weight vf_curr_NSweight_y_lower = spu_splats( curr_src_y_lower-(float)curr_interpl_y_lower ); // start partially double buffered processing // get initial data, 2 sets of y, 1 set v, 1 set u mfc_get( y_plane[curr_src_idx], (unsigned int) src_addr_y, src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( y_plane[curr_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(curr_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( v_plane[curr_src_idx], (unsigned int) src_addr_v, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); mfc_get( u_plane[curr_src_idx], (unsigned int) src_addr_u, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); // iteration loop // within each iteration 4 lines y, 2 lines v, 2 lines u are retrieved // the scaled output is 2 lines y, 1 line v, 1 line u // the yuv2rgb-converted output is stored to RAM for( dst_vu=0; dst_vu<(dst_height>>1)-1; dst_vu++ ) { dst_y = dst_vu<<1; // calculate next indices next_src_vu = ((float)dst_vu+1)*y_scale; next_src_y_upper = ((float)dst_y+2)*y_scale; next_src_y_lower = ((float)dst_y+3)*y_scale; next_interpl_vu = (unsigned int) next_src_vu; next_interpl_y_upper = (unsigned int) next_src_y_upper; next_interpl_y_lower = (unsigned int) next_src_y_lower; // calculate weight NORTH-SOUTH vf_next_NSweight_vu = spu_splats( next_src_vu-(float)next_interpl_vu ); vf_next_NSweight_y_upper = spu_splats( next_src_y_upper-(float)next_interpl_y_upper ); vf_next_NSweight_y_lower = spu_splats( next_src_y_lower-(float)next_interpl_y_lower ); // get next lines next_src_idx = curr_src_idx^1; next_dst_idx = curr_dst_idx^1; // 4 lines y mfc_get( y_plane[next_src_idx], (unsigned int) src_addr_y+(next_interpl_y_upper*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); mfc_get( y_plane[next_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(next_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines v mfc_get( v_plane[next_src_idx], (unsigned int) src_addr_v+(next_interpl_vu*src_linestride_vu), src_dbl_linestride_vu, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines u mfc_get( u_plane[next_src_idx], (unsigned int) src_addr_u+(next_interpl_vu*src_linestride_vu), src_dbl_linestride_vu, RETR_BUF+next_src_idx, 0, 0 ); DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w16( v_plane[curr_src_idx], scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w16( u_plane[curr_src_idx], scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); //--------------------------------------------------------------------------------------------- // update for next cycle curr_src_idx = next_src_idx; curr_dst_idx = next_dst_idx; curr_interpl_y_upper = next_interpl_y_upper; curr_interpl_y_lower = next_interpl_y_lower; curr_interpl_vu = next_interpl_vu; vf_curr_NSweight_y_upper = vf_curr_NSweight_y_upper; vf_curr_NSweight_y_lower = vf_curr_NSweight_y_lower; vf_curr_NSweight_vu = vf_next_NSweight_vu; curr_src_y_upper = next_src_y_upper; curr_src_y_lower = next_src_y_lower; curr_src_vu = next_src_vu; } DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w16( v_plane[curr_src_idx], scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w16( u_plane[curr_src_idx], scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); // wait for completion DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); //--------------------------------------------------------------------------------------------- } /** * scale_srcw32_dstw32() * * processes an input image of width 32 * scaling is done to a width 32 * yuv2rgb conversion on a width of 32 * result stored in RAM */ void scale_srcw32_dstw32() { // extract parameters unsigned char* dst_addr = (unsigned char *)parms.dstBuffer; unsigned int src_width = parms.src_pixel_width; unsigned int src_height = parms.src_pixel_height; unsigned int dst_width = parms.dst_pixel_width; unsigned int dst_height = parms.dst_pixel_height; // YVU unsigned int src_linestride_y = src_width; unsigned int src_dbl_linestride_y = src_width<<1; unsigned int src_linestride_vu = src_width>>1; unsigned int src_dbl_linestride_vu = src_width; // scaled YVU unsigned int scaled_src_linestride_y = dst_width; // ram addresses unsigned char* src_addr_y = parms.y_plane; unsigned char* src_addr_v = parms.v_plane; unsigned char* src_addr_u = parms.u_plane; unsigned int dst_picture_size = dst_width*dst_height; // Sizes for destination unsigned int dst_dbl_linestride_y = dst_width<<1; unsigned int dst_dbl_linestride_vu = dst_width>>1; // Perform address calculation for Y, V and U in main memory with dst_addr as base unsigned char* dst_addr_main_memory_y = dst_addr; unsigned char* dst_addr_main_memory_v = dst_addr + dst_picture_size; unsigned char* dst_addr_main_memory_u = dst_addr_main_memory_v +(dst_picture_size>>2); // calculate scale factors vector float vf_x_scale = spu_splats( (float)src_width/(float)dst_width ); float y_scale = (float)src_height/(float)dst_height; // double buffered processing // buffer switching unsigned int curr_src_idx = 0; unsigned int curr_dst_idx = 0; unsigned int next_src_idx, next_dst_idx; // 2 lines y as output, upper and lowerline unsigned int curr_interpl_y_upper = 0; unsigned int next_interpl_y_upper; unsigned int curr_interpl_y_lower, next_interpl_y_lower; // only 1 line v/u output, both planes have the same dimension unsigned int curr_interpl_vu = 0; unsigned int next_interpl_vu; // weights, calculated in every loop iteration vector float vf_curr_NSweight_y_upper = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_y_upper; vector float vf_curr_NSweight_y_lower, vf_next_NSweight_y_lower; vector float vf_curr_NSweight_vu = { 0.0f, 0.0f, 0.0f, 0.0f }; vector float vf_next_NSweight_vu; // line indices for the src picture float curr_src_y_upper = 0.0f, next_src_y_upper; float curr_src_y_lower, next_src_y_lower; float curr_src_vu = 0.0f, next_src_vu; // line indices for the dst picture unsigned int dst_y=0, dst_vu=0; // calculate lower line idices curr_src_y_lower = ((float)curr_interpl_y_upper+1)*y_scale; curr_interpl_y_lower = (unsigned int)curr_src_y_lower; // lower line weight vf_curr_NSweight_y_lower = spu_splats( curr_src_y_lower-(float)curr_interpl_y_lower ); // start partially double buffered processing // get initial data, 2 sets of y, 1 set v, 1 set u mfc_get( y_plane[curr_src_idx], (unsigned int) src_addr_y, src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( y_plane[curr_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(curr_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF, 0, 0 ); mfc_get( v_plane[curr_src_idx], (unsigned int) src_addr_v, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); mfc_get( u_plane[curr_src_idx], (unsigned int) src_addr_u, src_dbl_linestride_vu, RETR_BUF, 0, 0 ); // iteration loop // within each iteration 4 lines y, 2 lines v, 2 lines u are retrieved // the scaled output is 2 lines y, 1 line v, 1 line u // the yuv2rgb-converted output is stored to RAM for( dst_vu=0; dst_vu<(dst_height>>1)-1; dst_vu++ ) { dst_y = dst_vu<<1; // calculate next indices next_src_vu = ((float)dst_vu+1)*y_scale; next_src_y_upper = ((float)dst_y+2)*y_scale; next_src_y_lower = ((float)dst_y+3)*y_scale; next_interpl_vu = (unsigned int) next_src_vu; next_interpl_y_upper = (unsigned int) next_src_y_upper; next_interpl_y_lower = (unsigned int) next_src_y_lower; // calculate weight NORTH-SOUTH vf_next_NSweight_vu = spu_splats( next_src_vu-(float)next_interpl_vu ); vf_next_NSweight_y_upper = spu_splats( next_src_y_upper-(float)next_interpl_y_upper ); vf_next_NSweight_y_lower = spu_splats( next_src_y_lower-(float)next_interpl_y_lower ); // get next lines next_src_idx = curr_src_idx^1; next_dst_idx = curr_dst_idx^1; // 4 lines y mfc_get( y_plane[next_src_idx], (unsigned int) src_addr_y+(next_interpl_y_upper*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); mfc_get( y_plane[next_src_idx]+src_dbl_linestride_y, (unsigned int) src_addr_y+(next_interpl_y_lower*src_linestride_y), src_dbl_linestride_y, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines v mfc_get( v_plane[next_src_idx], (unsigned int) src_addr_v+(next_interpl_vu*src_linestride_vu), src_dbl_linestride_vu, RETR_BUF+next_src_idx, 0, 0 ); // 2 lines u mfc_get( u_plane[next_src_idx], (unsigned int) src_addr_u+(next_interpl_vu*src_linestride_vu), src_dbl_linestride_vu, RETR_BUF+next_src_idx, 0, 0 ); DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w16( v_plane[curr_src_idx], scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w16( u_plane[curr_src_idx], scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // Store the result back to main memory into a destination buffer in YUV format //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); //--------------------------------------------------------------------------------------------- // update for next cycle curr_src_idx = next_src_idx; curr_dst_idx = next_dst_idx; curr_interpl_y_upper = next_interpl_y_upper; curr_interpl_y_lower = next_interpl_y_lower; curr_interpl_vu = next_interpl_vu; vf_curr_NSweight_y_upper = vf_curr_NSweight_y_upper; vf_curr_NSweight_y_lower = vf_curr_NSweight_y_lower; vf_curr_NSweight_vu = vf_next_NSweight_vu; curr_src_y_upper = next_src_y_upper; curr_src_y_lower = next_src_y_lower; curr_src_vu = next_src_vu; } DMA_WAIT_TAG( (RETR_BUF+curr_src_idx) ); // scaling // work line y_upper bilinear_scale_line_w16( y_plane[curr_src_idx], scaled_y_plane[curr_src_idx], dst_width, vf_x_scale, vf_curr_NSweight_y_upper, src_linestride_y ); // work line y_lower bilinear_scale_line_w16( y_plane[curr_src_idx]+src_dbl_linestride_y, scaled_y_plane[curr_src_idx]+scaled_src_linestride_y, dst_width, vf_x_scale, vf_curr_NSweight_y_lower, src_linestride_y ); // work line v bilinear_scale_line_w16( v_plane[curr_src_idx], scaled_v_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // work line u bilinear_scale_line_w16( u_plane[curr_src_idx], scaled_u_plane[curr_src_idx], dst_width>>1, vf_x_scale, vf_curr_NSweight_vu, src_linestride_vu ); // Store the result back to main memory into a destination buffer in YUV format //--------------------------------------------------------------------------------------------- DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); // Perform three DMA transfers to 3 different locations in the main memory! // dst_width: Pixel width of destination image // dst_addr: Destination address in main memory // dst_vu: Counter which is incremented one by one // dst_y: Counter which is twice larger than dst_vu (dst_y = 2*dst_vu) mfc_put( scaled_y_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_y + (dst_vu*dst_dbl_linestride_y), // Destination in main memory (addr) dst_dbl_linestride_y, // Two Y lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_v_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_v + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two V lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); mfc_put( scaled_u_plane[curr_src_idx], // What from local store (addr) (unsigned int) dst_addr_main_memory_u + (dst_vu*dst_dbl_linestride_vu), // Destination in main memory (addr) dst_dbl_linestride_vu, // Two U lines (depending on the widht of the destination resolution) STR_BUF+curr_dst_idx, // Tag 0, 0 ); // wait for completion DMA_WAIT_TAG( (STR_BUF+curr_dst_idx) ); //--------------------------------------------------------------------------------------------- } /* * bilinear_scale_line_w8() * * processes a line of yuv-input, width has to be a multiple of 8 * scaled yuv-output is written to local store buffer * * @param src buffer for 2 lines input * @param dst_ buffer for 1 line output * @param dst_width the width of the destination line * @param vf_x_scale a float vector, at each entry is the x_scale-factor * @param vf_NSweight a float vector, at each position is the weight NORTH/SOUTH for the current line * @param src_linestride the stride of the srcline */ void bilinear_scale_line_w8( unsigned char* src, unsigned char* dst_, unsigned int dst_width, vector float vf_x_scale, vector float vf_NSweight, unsigned int src_linestride ) { unsigned char* dst = dst_; unsigned int dst_x; for( dst_x=0; dst_x<dst_width; dst_x+=8) { // address calculation for loading the 4 surrounding pixel of each calculated // destination pixel vector unsigned int vui_dst_x_tmp = spu_splats( dst_x ); // lower range->first 4 pixel // upper range->next 4 pixel vector unsigned int vui_inc_dst_x_lower_range = { 0, 1, 2, 3 }; vector unsigned int vui_inc_dst_x_upper_range = { 4, 5, 6, 7 }; vector unsigned int vui_dst_x_lower_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_lower_range ); vector unsigned int vui_dst_x_upper_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_upper_range ); // calculate weight EAST-WEST vector float vf_dst_x_lower_range = spu_convtf( vui_dst_x_lower_range, 0 ); vector float vf_dst_x_upper_range = spu_convtf( vui_dst_x_upper_range, 0 ); vector float vf_src_x_lower_range = spu_mul( vf_dst_x_lower_range, vf_x_scale ); vector float vf_src_x_upper_range = spu_mul( vf_dst_x_upper_range, vf_x_scale ); vector unsigned int vui_interpl_x_lower_range = spu_convtu( vf_src_x_lower_range, 0 ); vector unsigned int vui_interpl_x_upper_range = spu_convtu( vf_src_x_upper_range, 0 ); vector float vf_interpl_x_lower_range = spu_convtf( vui_interpl_x_lower_range, 0 ); vector float vf_interpl_x_upper_range = spu_convtf( vui_interpl_x_upper_range, 0 ); vector float vf_EWweight_lower_range = spu_sub( vf_src_x_lower_range, vf_interpl_x_lower_range ); vector float vf_EWweight_upper_range = spu_sub( vf_src_x_upper_range, vf_interpl_x_upper_range ); // calculate address offset // // pixel NORTH WEST vector unsigned int vui_off_pixelNW_lower_range = vui_interpl_x_lower_range; vector unsigned int vui_off_pixelNW_upper_range = vui_interpl_x_upper_range; // pixel NORTH EAST-->(offpixelNW+1) vector unsigned int vui_add_1 = { 1, 1, 1, 1 }; vector unsigned int vui_off_pixelNE_lower_range = spu_add( vui_off_pixelNW_lower_range, vui_add_1 ); vector unsigned int vui_off_pixelNE_upper_range = spu_add( vui_off_pixelNW_upper_range, vui_add_1 ); // SOUTH-WEST-->(offpixelNW+src_linestride) vector unsigned int vui_srclinestride = spu_splats( src_linestride ); vector unsigned int vui_off_pixelSW_lower_range = spu_add( vui_srclinestride, vui_off_pixelNW_lower_range ); vector unsigned int vui_off_pixelSW_upper_range = spu_add( vui_srclinestride, vui_off_pixelNW_upper_range ); // SOUTH-EAST-->(offpixelNW+src_linestride+1) vector unsigned int vui_off_pixelSE_lower_range = spu_add( vui_srclinestride, vui_off_pixelNE_lower_range ); vector unsigned int vui_off_pixelSE_upper_range = spu_add( vui_srclinestride, vui_off_pixelNE_upper_range ); // calculate each address vector unsigned int vui_src_ls = spu_splats( (unsigned int) src ); vector unsigned int vui_addr_pixelNW_lower_range = spu_add( vui_src_ls, vui_off_pixelNW_lower_range ); vector unsigned int vui_addr_pixelNW_upper_range = spu_add( vui_src_ls, vui_off_pixelNW_upper_range ); vector unsigned int vui_addr_pixelNE_lower_range = spu_add( vui_src_ls, vui_off_pixelNE_lower_range ); vector unsigned int vui_addr_pixelNE_upper_range = spu_add( vui_src_ls, vui_off_pixelNE_upper_range ); vector unsigned int vui_addr_pixelSW_lower_range = spu_add( vui_src_ls, vui_off_pixelSW_lower_range ); vector unsigned int vui_addr_pixelSW_upper_range = spu_add( vui_src_ls, vui_off_pixelSW_upper_range ); vector unsigned int vui_addr_pixelSE_lower_range = spu_add( vui_src_ls, vui_off_pixelSE_lower_range ); vector unsigned int vui_addr_pixelSE_upper_range = spu_add( vui_src_ls, vui_off_pixelSE_upper_range ); // get each pixel // // scalar load, afterwards insertion into the right position // NORTH WEST vector unsigned char null_vector = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; vector unsigned char vuc_pixel_NW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_lower_range, 0 )), null_vector, 3 ); vuc_pixel_NW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_lower_range, 1 )), vuc_pixel_NW_lower_range, 7 ); vuc_pixel_NW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_lower_range, 2 )), vuc_pixel_NW_lower_range, 11 ); vuc_pixel_NW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_lower_range, 3 )), vuc_pixel_NW_lower_range, 15 ); vector unsigned char vuc_pixel_NW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_upper_range, 0 )), null_vector, 3 ); vuc_pixel_NW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_upper_range, 1 )), vuc_pixel_NW_upper_range, 7 ); vuc_pixel_NW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_upper_range, 2 )), vuc_pixel_NW_upper_range, 11 ); vuc_pixel_NW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_upper_range, 3 )), vuc_pixel_NW_upper_range, 15 ); // NORTH EAST vector unsigned char vuc_pixel_NE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_lower_range, 0 )), null_vector, 3 ); vuc_pixel_NE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_lower_range, 1 )), vuc_pixel_NE_lower_range, 7 ); vuc_pixel_NE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_lower_range, 2 )), vuc_pixel_NE_lower_range, 11 ); vuc_pixel_NE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_lower_range, 3 )), vuc_pixel_NE_lower_range, 15 ); vector unsigned char vuc_pixel_NE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_upper_range, 0 )), null_vector, 3 ); vuc_pixel_NE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_upper_range, 1 )), vuc_pixel_NE_upper_range, 7 ); vuc_pixel_NE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_upper_range, 2 )), vuc_pixel_NE_upper_range, 11 ); vuc_pixel_NE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_upper_range, 3 )), vuc_pixel_NE_upper_range, 15 ); // SOUTH WEST vector unsigned char vuc_pixel_SW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_lower_range, 0 )), null_vector, 3 ); vuc_pixel_SW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_lower_range, 1 )), vuc_pixel_SW_lower_range, 7 ); vuc_pixel_SW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_lower_range, 2 )), vuc_pixel_SW_lower_range, 11 ); vuc_pixel_SW_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_lower_range, 3 )), vuc_pixel_SW_lower_range, 15 ); vector unsigned char vuc_pixel_SW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_upper_range, 0 )), null_vector, 3 ); vuc_pixel_SW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_upper_range, 1 )), vuc_pixel_SW_upper_range, 7 ); vuc_pixel_SW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_upper_range, 2 )), vuc_pixel_SW_upper_range, 11 ); vuc_pixel_SW_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_upper_range, 3 )), vuc_pixel_SW_upper_range, 15 ); // SOUTH EAST vector unsigned char vuc_pixel_SE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_lower_range, 0 )), null_vector, 3 ); vuc_pixel_SE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_lower_range, 1 )), vuc_pixel_SE_lower_range, 7 ); vuc_pixel_SE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_lower_range, 2 )), vuc_pixel_SE_lower_range, 11 ); vuc_pixel_SE_lower_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_lower_range, 3 )), vuc_pixel_SE_lower_range, 15 ); vector unsigned char vuc_pixel_SE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_upper_range, 0 )), null_vector, 3 ); vuc_pixel_SE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_upper_range, 1 )), vuc_pixel_SE_upper_range, 7 ); vuc_pixel_SE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_upper_range, 2 )), vuc_pixel_SE_upper_range, 11 ); vuc_pixel_SE_upper_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_upper_range, 3 )), vuc_pixel_SE_upper_range, 15 ); // convert to float vector float vf_pixel_NW_lower_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_lower_range, 0 ); vector float vf_pixel_NW_upper_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_upper_range, 0 ); vector float vf_pixel_SW_lower_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_lower_range, 0 ); vector float vf_pixel_SW_upper_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_upper_range, 0 ); vector float vf_pixel_NE_lower_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_lower_range, 0 ); vector float vf_pixel_NE_upper_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_upper_range, 0 ); vector float vf_pixel_SE_lower_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_lower_range, 0 ); vector float vf_pixel_SE_upper_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_upper_range, 0 ); // first linear interpolation: EWtop // EWtop = NW + EWweight*(NE-NW) // // lower range vector float vf_EWtop_lower_range_tmp = spu_sub( vf_pixel_NE_lower_range, vf_pixel_NW_lower_range ); vector float vf_EWtop_lower_range = spu_madd( vf_EWweight_lower_range, vf_EWtop_lower_range_tmp, vf_pixel_NW_lower_range ); // upper range vector float vf_EWtop_upper_range_tmp = spu_sub( vf_pixel_NE_upper_range, vf_pixel_NW_upper_range ); vector float vf_EWtop_upper_range = spu_madd( vf_EWweight_upper_range, vf_EWtop_upper_range_tmp, vf_pixel_NW_upper_range ); // second linear interpolation: EWbottom // EWbottom = SW + EWweight*(SE-SW) // // lower range vector float vf_EWbottom_lower_range_tmp = spu_sub( vf_pixel_SE_lower_range, vf_pixel_SW_lower_range ); vector float vf_EWbottom_lower_range = spu_madd( vf_EWweight_lower_range, vf_EWbottom_lower_range_tmp, vf_pixel_SW_lower_range ); // upper range vector float vf_EWbottom_upper_range_tmp = spu_sub( vf_pixel_SE_upper_range, vf_pixel_SW_upper_range ); vector float vf_EWbottom_upper_range = spu_madd( vf_EWweight_upper_range, vf_EWbottom_upper_range_tmp, vf_pixel_SW_upper_range ); // third linear interpolation: the bilinear interpolated value // result = EWtop + NSweight*(EWbottom-EWtop); // // lower range vector float vf_result_lower_range_tmp = spu_sub( vf_EWbottom_lower_range, vf_EWtop_lower_range ); vector float vf_result_lower_range = spu_madd( vf_NSweight, vf_result_lower_range_tmp, vf_EWtop_lower_range ); // upper range vector float vf_result_upper_range_tmp = spu_sub( vf_EWbottom_upper_range, vf_EWtop_upper_range ); vector float vf_result_upper_range = spu_madd( vf_NSweight, vf_result_upper_range_tmp, vf_EWtop_upper_range ); // convert back: using saturated arithmetic vector unsigned int vui_result_lower_range = vfloat_to_vuint( vf_result_lower_range ); vector unsigned int vui_result_upper_range = vfloat_to_vuint( vf_result_upper_range ); // merge results->lower,upper vector unsigned char vuc_mask_merge_result = { 0x03, 0x07, 0x0B, 0x0F, 0x13, 0x17, 0x1B, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; vector unsigned char vuc_result = spu_shuffle( (vector unsigned char) vui_result_lower_range, (vector unsigned char) vui_result_upper_range, vuc_mask_merge_result ); // partial storing vector unsigned char vuc_mask_out = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF }; // get currently stored data vector unsigned char vuc_orig = *((vector unsigned char*)dst); // clear currently stored data vuc_orig = spu_and( vuc_orig, spu_rlqwbyte( vuc_mask_out, ((unsigned int)dst)&0x0F) ); // rotate result according to storing address vuc_result = spu_rlqwbyte( vuc_result, ((unsigned int)dst)&0x0F ); // store result *((vector unsigned char*)dst) = spu_or( vuc_result, vuc_orig ); dst += 8; } } /* * bilinear_scale_line_w16() * * processes a line of yuv-input, width has to be a multiple of 16 * scaled yuv-output is written to local store buffer * * @param src buffer for 2 lines input * @param dst_ buffer for 1 line output * @param dst_width the width of the destination line * @param vf_x_scale a float vector, at each entry is the x_scale-factor * @param vf_NSweight a float vector, at each position is the weight NORTH/SOUTH for the current line * @param src_linestride the stride of the srcline */ void bilinear_scale_line_w16( unsigned char* src, unsigned char* dst_, unsigned int dst_width, vector float vf_x_scale, vector float vf_NSweight, unsigned int src_linestride ) { unsigned char* dst = dst_; unsigned int dst_x; for( dst_x=0; dst_x<dst_width; dst_x+=16) { // address calculation for loading the 4 surrounding pixel of each calculated // destination pixel vector unsigned int vui_dst_x_tmp = spu_splats( dst_x ); // parallelised processing // first range->pixel 1 2 3 4 // second range->pixel 5 6 7 8 // third range->pixel 9 10 11 12 // fourth range->pixel 13 14 15 16 vector unsigned int vui_inc_dst_x_first_range = { 0, 1, 2, 3 }; vector unsigned int vui_inc_dst_x_second_range = { 4, 5, 6, 7 }; vector unsigned int vui_inc_dst_x_third_range = { 8, 9, 10, 11 }; vector unsigned int vui_inc_dst_x_fourth_range = { 12, 13, 14, 15 }; vector unsigned int vui_dst_x_first_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_first_range ); vector unsigned int vui_dst_x_second_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_second_range ); vector unsigned int vui_dst_x_third_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_third_range ); vector unsigned int vui_dst_x_fourth_range = spu_add( vui_dst_x_tmp, vui_inc_dst_x_fourth_range ); // calculate weight EAST-WEST vector float vf_dst_x_first_range = spu_convtf( vui_dst_x_first_range, 0 ); vector float vf_dst_x_second_range = spu_convtf( vui_dst_x_second_range, 0 ); vector float vf_dst_x_third_range = spu_convtf( vui_dst_x_third_range, 0 ); vector float vf_dst_x_fourth_range = spu_convtf( vui_dst_x_fourth_range, 0 ); vector float vf_src_x_first_range = spu_mul( vf_dst_x_first_range, vf_x_scale ); vector float vf_src_x_second_range = spu_mul( vf_dst_x_second_range, vf_x_scale ); vector float vf_src_x_third_range = spu_mul( vf_dst_x_third_range, vf_x_scale ); vector float vf_src_x_fourth_range = spu_mul( vf_dst_x_fourth_range, vf_x_scale ); vector unsigned int vui_interpl_x_first_range = spu_convtu( vf_src_x_first_range, 0 ); vector unsigned int vui_interpl_x_second_range = spu_convtu( vf_src_x_second_range, 0 ); vector unsigned int vui_interpl_x_third_range = spu_convtu( vf_src_x_third_range, 0 ); vector unsigned int vui_interpl_x_fourth_range = spu_convtu( vf_src_x_fourth_range, 0 ); vector float vf_interpl_x_first_range = spu_convtf( vui_interpl_x_first_range, 0 ); vector float vf_interpl_x_second_range = spu_convtf( vui_interpl_x_second_range, 0 ); vector float vf_interpl_x_third_range = spu_convtf( vui_interpl_x_third_range, 0 ); vector float vf_interpl_x_fourth_range = spu_convtf( vui_interpl_x_fourth_range, 0 ); vector float vf_EWweight_first_range = spu_sub( vf_src_x_first_range, vf_interpl_x_first_range ); vector float vf_EWweight_second_range = spu_sub( vf_src_x_second_range, vf_interpl_x_second_range ); vector float vf_EWweight_third_range = spu_sub( vf_src_x_third_range, vf_interpl_x_third_range ); vector float vf_EWweight_fourth_range = spu_sub( vf_src_x_fourth_range, vf_interpl_x_fourth_range ); // calculate address offset // // pixel NORTH WEST vector unsigned int vui_off_pixelNW_first_range = vui_interpl_x_first_range; vector unsigned int vui_off_pixelNW_second_range = vui_interpl_x_second_range; vector unsigned int vui_off_pixelNW_third_range = vui_interpl_x_third_range; vector unsigned int vui_off_pixelNW_fourth_range = vui_interpl_x_fourth_range; // pixel NORTH EAST-->(offpixelNW+1) vector unsigned int vui_add_1 = { 1, 1, 1, 1 }; vector unsigned int vui_off_pixelNE_first_range = spu_add( vui_off_pixelNW_first_range, vui_add_1 ); vector unsigned int vui_off_pixelNE_second_range = spu_add( vui_off_pixelNW_second_range, vui_add_1 ); vector unsigned int vui_off_pixelNE_third_range = spu_add( vui_off_pixelNW_third_range, vui_add_1 ); vector unsigned int vui_off_pixelNE_fourth_range = spu_add( vui_off_pixelNW_fourth_range, vui_add_1 ); // SOUTH-WEST-->(offpixelNW+src_linestride) vector unsigned int vui_srclinestride = spu_splats( src_linestride ); vector unsigned int vui_off_pixelSW_first_range = spu_add( vui_srclinestride, vui_off_pixelNW_first_range ); vector unsigned int vui_off_pixelSW_second_range = spu_add( vui_srclinestride, vui_off_pixelNW_second_range ); vector unsigned int vui_off_pixelSW_third_range = spu_add( vui_srclinestride, vui_off_pixelNW_third_range ); vector unsigned int vui_off_pixelSW_fourth_range = spu_add( vui_srclinestride, vui_off_pixelNW_fourth_range ); // SOUTH-EAST-->(offpixelNW+src_linestride+1) vector unsigned int vui_off_pixelSE_first_range = spu_add( vui_srclinestride, vui_off_pixelNE_first_range ); vector unsigned int vui_off_pixelSE_second_range = spu_add( vui_srclinestride, vui_off_pixelNE_second_range ); vector unsigned int vui_off_pixelSE_third_range = spu_add( vui_srclinestride, vui_off_pixelNE_third_range ); vector unsigned int vui_off_pixelSE_fourth_range = spu_add( vui_srclinestride, vui_off_pixelNE_fourth_range ); // calculate each address vector unsigned int vui_src_ls = spu_splats( (unsigned int) src ); vector unsigned int vui_addr_pixelNW_first_range = spu_add( vui_src_ls, vui_off_pixelNW_first_range ); vector unsigned int vui_addr_pixelNW_second_range = spu_add( vui_src_ls, vui_off_pixelNW_second_range ); vector unsigned int vui_addr_pixelNW_third_range = spu_add( vui_src_ls, vui_off_pixelNW_third_range ); vector unsigned int vui_addr_pixelNW_fourth_range = spu_add( vui_src_ls, vui_off_pixelNW_fourth_range ); vector unsigned int vui_addr_pixelNE_first_range = spu_add( vui_src_ls, vui_off_pixelNE_first_range ); vector unsigned int vui_addr_pixelNE_second_range = spu_add( vui_src_ls, vui_off_pixelNE_second_range ); vector unsigned int vui_addr_pixelNE_third_range = spu_add( vui_src_ls, vui_off_pixelNE_third_range ); vector unsigned int vui_addr_pixelNE_fourth_range = spu_add( vui_src_ls, vui_off_pixelNE_fourth_range ); vector unsigned int vui_addr_pixelSW_first_range = spu_add( vui_src_ls, vui_off_pixelSW_first_range ); vector unsigned int vui_addr_pixelSW_second_range = spu_add( vui_src_ls, vui_off_pixelSW_second_range ); vector unsigned int vui_addr_pixelSW_third_range = spu_add( vui_src_ls, vui_off_pixelSW_third_range ); vector unsigned int vui_addr_pixelSW_fourth_range = spu_add( vui_src_ls, vui_off_pixelSW_fourth_range ); vector unsigned int vui_addr_pixelSE_first_range = spu_add( vui_src_ls, vui_off_pixelSE_first_range ); vector unsigned int vui_addr_pixelSE_second_range = spu_add( vui_src_ls, vui_off_pixelSE_second_range ); vector unsigned int vui_addr_pixelSE_third_range = spu_add( vui_src_ls, vui_off_pixelSE_third_range ); vector unsigned int vui_addr_pixelSE_fourth_range = spu_add( vui_src_ls, vui_off_pixelSE_fourth_range ); // get each pixel // // scalar load, afterwards insertion into the right position // NORTH WEST // first range vector unsigned char null_vector = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}; vector unsigned char vuc_pixel_NW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_first_range, 0 )), null_vector, 3 ); vuc_pixel_NW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_first_range, 1 )), vuc_pixel_NW_first_range, 7 ); vuc_pixel_NW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_first_range, 2 )), vuc_pixel_NW_first_range, 11 ); vuc_pixel_NW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_first_range, 3 )), vuc_pixel_NW_first_range, 15 ); // second range vector unsigned char vuc_pixel_NW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_second_range, 0 )), null_vector, 3 ); vuc_pixel_NW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_second_range, 1 )), vuc_pixel_NW_second_range, 7 ); vuc_pixel_NW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_second_range, 2 )), vuc_pixel_NW_second_range, 11 ); vuc_pixel_NW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_second_range, 3 )), vuc_pixel_NW_second_range, 15 ); // third range vector unsigned char vuc_pixel_NW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_third_range, 0 )), null_vector, 3 ); vuc_pixel_NW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_third_range, 1 )), vuc_pixel_NW_third_range, 7 ); vuc_pixel_NW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_third_range, 2 )), vuc_pixel_NW_third_range, 11 ); vuc_pixel_NW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_third_range, 3 )), vuc_pixel_NW_third_range, 15 ); // fourth range vector unsigned char vuc_pixel_NW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_fourth_range, 0 )), null_vector, 3 ); vuc_pixel_NW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_fourth_range, 1 )), vuc_pixel_NW_fourth_range, 7 ); vuc_pixel_NW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_fourth_range, 2 )), vuc_pixel_NW_fourth_range, 11 ); vuc_pixel_NW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNW_fourth_range, 3 )), vuc_pixel_NW_fourth_range, 15 ); // NORTH EAST // first range vector unsigned char vuc_pixel_NE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_first_range, 0 )), null_vector, 3 ); vuc_pixel_NE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_first_range, 1 )), vuc_pixel_NE_first_range, 7 ); vuc_pixel_NE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_first_range, 2 )), vuc_pixel_NE_first_range, 11 ); vuc_pixel_NE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_first_range, 3 )), vuc_pixel_NE_first_range, 15 ); // second range vector unsigned char vuc_pixel_NE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_second_range, 0 )), null_vector, 3 ); vuc_pixel_NE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_second_range, 1 )), vuc_pixel_NE_second_range, 7 ); vuc_pixel_NE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_second_range, 2 )), vuc_pixel_NE_second_range, 11 ); vuc_pixel_NE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_second_range, 3 )), vuc_pixel_NE_second_range, 15 ); // third range vector unsigned char vuc_pixel_NE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_third_range, 0 )), null_vector, 3 ); vuc_pixel_NE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_third_range, 1 )), vuc_pixel_NE_third_range, 7 ); vuc_pixel_NE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_third_range, 2 )), vuc_pixel_NE_third_range, 11 ); vuc_pixel_NE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_third_range, 3 )), vuc_pixel_NE_third_range, 15 ); // fourth range vector unsigned char vuc_pixel_NE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_fourth_range, 0 )), null_vector, 3 ); vuc_pixel_NE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_fourth_range, 1 )), vuc_pixel_NE_fourth_range, 7 ); vuc_pixel_NE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_fourth_range, 2 )), vuc_pixel_NE_fourth_range, 11 ); vuc_pixel_NE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelNE_fourth_range, 3 )), vuc_pixel_NE_fourth_range, 15 ); // SOUTH WEST // first range vector unsigned char vuc_pixel_SW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_first_range, 0 )), null_vector, 3 ); vuc_pixel_SW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_first_range, 1 )), vuc_pixel_SW_first_range, 7 ); vuc_pixel_SW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_first_range, 2 )), vuc_pixel_SW_first_range, 11 ); vuc_pixel_SW_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_first_range, 3 )), vuc_pixel_SW_first_range, 15 ); // second range vector unsigned char vuc_pixel_SW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_second_range, 0 )), null_vector, 3 ); vuc_pixel_SW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_second_range, 1 )), vuc_pixel_SW_second_range, 7 ); vuc_pixel_SW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_second_range, 2 )), vuc_pixel_SW_second_range, 11 ); vuc_pixel_SW_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_second_range, 3 )), vuc_pixel_SW_second_range, 15 ); // third range vector unsigned char vuc_pixel_SW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_third_range, 0 )), null_vector, 3 ); vuc_pixel_SW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_third_range, 1 )), vuc_pixel_SW_third_range, 7 ); vuc_pixel_SW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_third_range, 2 )), vuc_pixel_SW_third_range, 11 ); vuc_pixel_SW_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_third_range, 3 )), vuc_pixel_SW_third_range, 15 ); // fourth range vector unsigned char vuc_pixel_SW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_fourth_range, 0 )), null_vector, 3 ); vuc_pixel_SW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_fourth_range, 1 )), vuc_pixel_SW_fourth_range, 7 ); vuc_pixel_SW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_fourth_range, 2 )), vuc_pixel_SW_fourth_range, 11 ); vuc_pixel_SW_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSW_fourth_range, 3 )), vuc_pixel_SW_fourth_range, 15 ); // NORTH EAST // first range vector unsigned char vuc_pixel_SE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_first_range, 0 )), null_vector, 3 ); vuc_pixel_SE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_first_range, 1 )), vuc_pixel_SE_first_range, 7 ); vuc_pixel_SE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_first_range, 2 )), vuc_pixel_SE_first_range, 11 ); vuc_pixel_SE_first_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_first_range, 3 )), vuc_pixel_SE_first_range, 15 ); // second range vector unsigned char vuc_pixel_SE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_second_range, 0 )), null_vector, 3 ); vuc_pixel_SE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_second_range, 1 )), vuc_pixel_SE_second_range, 7 ); vuc_pixel_SE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_second_range, 2 )), vuc_pixel_SE_second_range, 11 ); vuc_pixel_SE_second_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_second_range, 3 )), vuc_pixel_SE_second_range, 15 ); // third range vector unsigned char vuc_pixel_SE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_third_range, 0 )), null_vector, 3 ); vuc_pixel_SE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_third_range, 1 )), vuc_pixel_SE_third_range, 7 ); vuc_pixel_SE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_third_range, 2 )), vuc_pixel_SE_third_range, 11 ); vuc_pixel_SE_third_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_third_range, 3 )), vuc_pixel_SE_third_range, 15 ); // fourth range vector unsigned char vuc_pixel_SE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_fourth_range, 0 )), null_vector, 3 ); vuc_pixel_SE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_fourth_range, 1 )), vuc_pixel_SE_fourth_range, 7 ); vuc_pixel_SE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_fourth_range, 2 )), vuc_pixel_SE_fourth_range, 11 ); vuc_pixel_SE_fourth_range = spu_insert( *((unsigned char*) spu_extract( vui_addr_pixelSE_fourth_range, 3 )), vuc_pixel_SE_fourth_range, 15 ); // convert to float vector float vf_pixel_NW_first_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_first_range, 0 ); vector float vf_pixel_NW_second_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_second_range, 0 ); vector float vf_pixel_NW_third_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_third_range, 0 ); vector float vf_pixel_NW_fourth_range = spu_convtf( (vector unsigned int) vuc_pixel_NW_fourth_range, 0 ); vector float vf_pixel_NE_first_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_first_range, 0 ); vector float vf_pixel_NE_second_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_second_range, 0 ); vector float vf_pixel_NE_third_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_third_range, 0 ); vector float vf_pixel_NE_fourth_range = spu_convtf( (vector unsigned int) vuc_pixel_NE_fourth_range, 0 ); vector float vf_pixel_SW_first_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_first_range, 0 ); vector float vf_pixel_SW_second_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_second_range, 0 ); vector float vf_pixel_SW_third_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_third_range, 0 ); vector float vf_pixel_SW_fourth_range = spu_convtf( (vector unsigned int) vuc_pixel_SW_fourth_range, 0 ); vector float vf_pixel_SE_first_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_first_range, 0 ); vector float vf_pixel_SE_second_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_second_range, 0 ); vector float vf_pixel_SE_third_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_third_range, 0 ); vector float vf_pixel_SE_fourth_range = spu_convtf( (vector unsigned int) vuc_pixel_SE_fourth_range, 0 ); // first linear interpolation: EWtop // EWtop = NW + EWweight*(NE-NW) // // first range vector float vf_EWtop_first_range_tmp = spu_sub( vf_pixel_NE_first_range, vf_pixel_NW_first_range ); vector float vf_EWtop_first_range = spu_madd( vf_EWweight_first_range, vf_EWtop_first_range_tmp, vf_pixel_NW_first_range ); // second range vector float vf_EWtop_second_range_tmp = spu_sub( vf_pixel_NE_second_range, vf_pixel_NW_second_range ); vector float vf_EWtop_second_range = spu_madd( vf_EWweight_second_range, vf_EWtop_second_range_tmp, vf_pixel_NW_second_range ); // third range vector float vf_EWtop_third_range_tmp = spu_sub( vf_pixel_NE_third_range, vf_pixel_NW_third_range ); vector float vf_EWtop_third_range = spu_madd( vf_EWweight_third_range, vf_EWtop_third_range_tmp, vf_pixel_NW_third_range ); // fourth range vector float vf_EWtop_fourth_range_tmp = spu_sub( vf_pixel_NE_fourth_range, vf_pixel_NW_fourth_range ); vector float vf_EWtop_fourth_range = spu_madd( vf_EWweight_fourth_range, vf_EWtop_fourth_range_tmp, vf_pixel_NW_fourth_range ); // second linear interpolation: EWbottom // EWbottom = SW + EWweight*(SE-SW) // // first range vector float vf_EWbottom_first_range_tmp = spu_sub( vf_pixel_SE_first_range, vf_pixel_SW_first_range ); vector float vf_EWbottom_first_range = spu_madd( vf_EWweight_first_range, vf_EWbottom_first_range_tmp, vf_pixel_SW_first_range ); // second range vector float vf_EWbottom_second_range_tmp = spu_sub( vf_pixel_SE_second_range, vf_pixel_SW_second_range ); vector float vf_EWbottom_second_range = spu_madd( vf_EWweight_second_range, vf_EWbottom_second_range_tmp, vf_pixel_SW_second_range ); // first range vector float vf_EWbottom_third_range_tmp = spu_sub( vf_pixel_SE_third_range, vf_pixel_SW_third_range ); vector float vf_EWbottom_third_range = spu_madd( vf_EWweight_third_range, vf_EWbottom_third_range_tmp, vf_pixel_SW_third_range ); // first range vector float vf_EWbottom_fourth_range_tmp = spu_sub( vf_pixel_SE_fourth_range, vf_pixel_SW_fourth_range ); vector float vf_EWbottom_fourth_range = spu_madd( vf_EWweight_fourth_range, vf_EWbottom_fourth_range_tmp, vf_pixel_SW_fourth_range ); // third linear interpolation: the bilinear interpolated value // result = EWtop + NSweight*(EWbottom-EWtop); // // first range vector float vf_result_first_range_tmp = spu_sub( vf_EWbottom_first_range, vf_EWtop_first_range ); vector float vf_result_first_range = spu_madd( vf_NSweight, vf_result_first_range_tmp, vf_EWtop_first_range ); // second range vector float vf_result_second_range_tmp = spu_sub( vf_EWbottom_second_range, vf_EWtop_second_range ); vector float vf_result_second_range = spu_madd( vf_NSweight, vf_result_second_range_tmp, vf_EWtop_second_range ); // third range vector float vf_result_third_range_tmp = spu_sub( vf_EWbottom_third_range, vf_EWtop_third_range ); vector float vf_result_third_range = spu_madd( vf_NSweight, vf_result_third_range_tmp, vf_EWtop_third_range ); // fourth range vector float vf_result_fourth_range_tmp = spu_sub( vf_EWbottom_fourth_range, vf_EWtop_fourth_range ); vector float vf_result_fourth_range = spu_madd( vf_NSweight, vf_result_fourth_range_tmp, vf_EWtop_fourth_range ); // convert back: using saturated arithmetic vector unsigned int vui_result_first_range = vfloat_to_vuint( vf_result_first_range ); vector unsigned int vui_result_second_range = vfloat_to_vuint( vf_result_second_range ); vector unsigned int vui_result_third_range = vfloat_to_vuint( vf_result_third_range ); vector unsigned int vui_result_fourth_range = vfloat_to_vuint( vf_result_fourth_range ); // merge results->lower,upper vector unsigned char vuc_mask_merge_result_first_second = { 0x03, 0x07, 0x0B, 0x0F, 0x13, 0x17, 0x1B, 0x1F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; vector unsigned char vuc_mask_merge_result_third_fourth = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x03, 0x07, 0x0B, 0x0F, 0x13, 0x17, 0x1B, 0x1F }; vector unsigned char vuc_result_first_second = spu_shuffle( (vector unsigned char) vui_result_first_range, (vector unsigned char) vui_result_second_range, vuc_mask_merge_result_first_second ); vector unsigned char vuc_result_third_fourth = spu_shuffle( (vector unsigned char) vui_result_third_range, (vector unsigned char) vui_result_fourth_range, vuc_mask_merge_result_third_fourth ); // store result *((vector unsigned char*)dst) = spu_or( vuc_result_first_second, vuc_result_third_fourth ); dst += 16; } }