Mercurial > sdl-ios-xcode
view src/thread/pthread/SDL_sysmutex.c @ 4223:63fd67e17705 SDL-1.2
Fixed bug #727
Lorenzo Desole 2009-04-19 07:36:10 PDT
I am one of the developers of a multimedia application (My Media System MMS),
which uses SDL.
MMS is normally running in fullscreen mode but it switches it off before
launching external applications (mplayer, xine, etc.).
The problem with fullscreen is that when the latter is switched off either via
SDL_WM_ToggleFullScreen() or SDL_SetVideoMode(), SDL compares the current
screen sizes with the ones saved when the video system was initted, and if they
don't match, it calls XF86VidModeSwitchToMode() to switch to the old modeline.
This makes it impossible for external programs and for MMS itself to use RandR
to change the screen size, because next time fullscreen mode is turned off, it
bombs out with the following error:
X Error of failed request: BadValue (integer parameter out of range for
operation)
Major opcode of failed request: 136 (XFree86-VidModeExtension)
Minor opcode of failed request: 10 (XF86VidModeSwitchToMode)
[...]
Obviously this happens only if the new screen resolution is smaller than the
original one and XF86VidModeSwitchToMode() can't succeed.
I couldn't find any way to inform SDL that the screen resolution it uses as
reference is no longer valid.
This can be fixed by adding "save_mode(this)" to
./src/video/x11/SDL_x11modes.c, API X11_EnterFullScreen(_THIS), like this:
int X11_EnterFullScreen(_THIS)
{
int okay;
+ save_mode(this);
I can't rule out possible side effects, but I don't see any.
While I admit this is a minor issue for the general users, it is a major
showstopper for our program where the ability to change screen resolution and
refresh rate according to the movie being played, is very important.
Thanks in advance.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 21 Sep 2009 11:14:36 +0000 |
parents | a1b03ba2fcd0 |
children |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2009 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Sam Lantinga slouken@libsdl.org */ #include "SDL_config.h" #include <pthread.h> #include "SDL_thread.h" #if !SDL_THREAD_PTHREAD_RECURSIVE_MUTEX && \ !SDL_THREAD_PTHREAD_RECURSIVE_MUTEX_NP #define FAKE_RECURSIVE_MUTEX #endif struct SDL_mutex { pthread_mutex_t id; #if FAKE_RECURSIVE_MUTEX int recursive; pthread_t owner; #endif }; SDL_mutex *SDL_CreateMutex (void) { SDL_mutex *mutex; pthread_mutexattr_t attr; /* Allocate the structure */ mutex = (SDL_mutex *)SDL_calloc(1, sizeof(*mutex)); if ( mutex ) { pthread_mutexattr_init(&attr); #if SDL_THREAD_PTHREAD_RECURSIVE_MUTEX pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE); #elif SDL_THREAD_PTHREAD_RECURSIVE_MUTEX_NP pthread_mutexattr_setkind_np(&attr, PTHREAD_MUTEX_RECURSIVE_NP); #else /* No extra attributes necessary */ #endif if ( pthread_mutex_init(&mutex->id, &attr) != 0 ) { SDL_SetError("pthread_mutex_init() failed"); SDL_free(mutex); mutex = NULL; } } else { SDL_OutOfMemory(); } return(mutex); } void SDL_DestroyMutex(SDL_mutex *mutex) { if ( mutex ) { pthread_mutex_destroy(&mutex->id); SDL_free(mutex); } } /* Lock the mutex */ int SDL_mutexP(SDL_mutex *mutex) { int retval; #if FAKE_RECURSIVE_MUTEX pthread_t this_thread; #endif if ( mutex == NULL ) { SDL_SetError("Passed a NULL mutex"); return -1; } retval = 0; #if FAKE_RECURSIVE_MUTEX this_thread = pthread_self(); if ( mutex->owner == this_thread ) { ++mutex->recursive; } else { /* The order of operations is important. We set the locking thread id after we obtain the lock so unlocks from other threads will fail. */ if ( pthread_mutex_lock(&mutex->id) == 0 ) { mutex->owner = this_thread; mutex->recursive = 0; } else { SDL_SetError("pthread_mutex_lock() failed"); retval = -1; } } #else if ( pthread_mutex_lock(&mutex->id) < 0 ) { SDL_SetError("pthread_mutex_lock() failed"); retval = -1; } #endif return retval; } int SDL_mutexV(SDL_mutex *mutex) { int retval; if ( mutex == NULL ) { SDL_SetError("Passed a NULL mutex"); return -1; } retval = 0; #if FAKE_RECURSIVE_MUTEX /* We can only unlock the mutex if we own it */ if ( pthread_self() == mutex->owner ) { if ( mutex->recursive ) { --mutex->recursive; } else { /* The order of operations is important. First reset the owner so another thread doesn't lock the mutex and set the ownership before we reset it, then release the lock semaphore. */ mutex->owner = 0; pthread_mutex_unlock(&mutex->id); } } else { SDL_SetError("mutex not owned by this thread"); retval = -1; } #else if ( pthread_mutex_unlock(&mutex->id) < 0 ) { SDL_SetError("pthread_mutex_unlock() failed"); retval = -1; } #endif /* FAKE_RECURSIVE_MUTEX */ return retval; }