Mercurial > sdl-ios-xcode
view src/hermes/x86p_16.asm @ 4139:568c9b3c0167 SDL-1.2
* Added configure option --enable-screensaver, to allow enabling the screensaver by default.
* Use XResetScreenSaver() instead of disabling screensaver entirely.
Full discussion summary from Erik on the SDL mailing list:
Current behaviour
=================
SDL changes the user's display power management settings without
permission from the user and without telling the user.
The interface that it uses to do so is DPMSDisable/DPMSEnable, which
should only ever be used by configuration utilities like KControl, never
by normal application programs, let alone by the libraries that they
use. Using an interface that is not at all intended for what SDL tries
to achieve means that it will not work as it should. Firstly, the power
management is completely disabled during the whole lifetime of the SDL
program, not only when it should be. Secondly, it makes SDL
non-reentrant, meaning that things will break when multiple SDL programs
are clients of the same X server simultaneously. Thirdly, no cleanup
mechanism ensures that the setting is restored if the client does not do
that (for example if it crashes).
In addition to that, this interface is broken on xorg,
[http://bugs.freedesktop.org/show_bug.cgi?id=13962], so what SDL tries
to do does not work at all on that implementation of the X Window
System. (The reason that the DPMSEnable works in KControl is that it
calls DPMSSetTimeout immediately after,
[http://websvn.kde.org/tags/KDE/3.5.9/kdebase/kcontrol/energy/energy.cpp?annotate=774532#l343]).
The problems that the current behaviour causes
==============================================
1. Information leak. When the user is away, someone might see what the
user has on the display when the user counts on the screensaver
preventing this. This does not even require physical access to the
workstation, it is enough to see it from a distance.
2. Draining battery. An SDL program that runs on a laptop will quickly
drain the battery while the user is away. The system will soon shut down
and require recharging before being usable again, while it should in
fact have consumed very little energy if the user's settings would have
been obeyed.
3. Wasting energy. Even if battery issues are not considered, energy as
such is wasted.
4. Display wear. The display may be worn out.
The problems that the current behaviour tries to solve
======================================================
1. Preventing screensaver while playing movies.
Many SDL applications are media players. They have reasons to prevent
screensavers from being activated while a movie is being played. When a
user clicks on the play button it can be interpreted as saying "play
this movie, but do not turn off the display while playing it, because I
will watch it even though I do not interact with the system".
2. Preventing screensaver when some input bypasses X.
Sometimes SDL uses input from another source than the X server, so
that the X server is bypassed. This obviously breaks the screensaver
handling. SDL tries to work around that.
3. Preventing screensaver when all input bypasses X.
There is something called Direct Graphics Access mode, where a
program takes control of both the display and the input devices from the
X server. This obviously means that the X server can not handle the
screensaver alone, since screensaver handling depends on input handling.
SDL does not do what it should to help the X server to handle the
screensaver. Nor does SDL take care of screeensaver handling itself. SDL
simply disables the screensaver completely.
How the problems should be solved
=================================
The correct way for an application program to prevent the screensaver
under X is to call XResetScreenSaver. This was recently discovered and
implemented by the mplayer developers,
[http://svn.mplayerhq.hu/mplayer?view=rev&revision=25637]. SDL needs to
wrap this in an API call (SDL_ResetScreenSaver) and implement it for the
other video targets (if they do not have a corresponding call, SDL
should do what it takes on that particular target, for example sending
fake key events).
1. When a movie is played, the player should reset the screensaver when
the animation is advanced to a new frame. The same applies to anything
similar, like slideshows.
2. When the X server is handling input, it must handle all input
(keyboards, mice, gamepads, ...). This is necessary, not only to be able
to handle the screensaver, but also so that it can send the events to
the correct (the currently active) client. If there is an input device
that the X server can not handle for some reason (such as lack of Plug
and Play capability), the program that handles the device as a
workaround must simulate what would happen if the X server would have
handled the device, by calling XResetScreenSaver when input is received
from the device.
3. When the X server is not handling the input, it depends on the
program that does to call XResetScreenSaver whenever an input event
occurs. Alternatively the program must handle the screensaver countdown
internally and call XActivateScreenSaver.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Fri, 29 Feb 2008 13:55:44 +0000 |
parents | 540466e900db |
children |
line wrap: on
line source
; ; x86 format converters for HERMES ; Copyright (c) 1998 Glenn Fielder (gaffer@gaffer.org) ; This source code is licensed under the GNU LGPL ; ; Please refer to the file COPYING.LIB contained in the distribution for ; licensing conditions ; ; Routines adjusted for Hermes by Christian Nentwich (brn@eleet.mcb.at) ; Used with permission. ; BITS 32 %include "common.inc" SDL_FUNC _ConvertX86p16_16BGR565 SDL_FUNC _ConvertX86p16_16RGB555 SDL_FUNC _ConvertX86p16_16BGR555 SDL_FUNC _ConvertX86p16_8RGB332 EXTERN _ConvertX86 SECTION .text _ConvertX86p16_16BGR565: ; check short cmp ecx,BYTE 16 ja .L3 .L1 ; short loop mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b and ebx,11111100000b shl edx,11 add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx jnz .L1 .L2 retn .L3 ; head mov eax,edi and eax,BYTE 11b jz .L4 mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b and ebx,11111100000b shl edx,11 add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx .L4 ; save count push ecx ; unroll twice shr ecx,1 ; point arrays to end lea esi,[esi+ecx*4] lea edi,[edi+ecx*4] ; negative counter neg ecx jmp SHORT .L6 .L5 mov [edi+ecx*4-4],eax .L6 mov eax,[esi+ecx*4] mov ebx,[esi+ecx*4] and eax,07E007E0h mov edx,[esi+ecx*4] and ebx,0F800F800h shr ebx,11 and edx,001F001Fh shl edx,11 add eax,ebx add eax,edx inc ecx jnz .L5 mov [edi+ecx*4-4],eax ; tail pop ecx and ecx,BYTE 1 jz .L7 mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b and ebx,11111100000b shl edx,11 add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 .L7 retn _ConvertX86p16_16RGB555: ; check short cmp ecx,BYTE 32 ja .L3 .L1 ; short loop mov al,[esi] mov ah,[esi+1] mov ebx,eax shr ebx,1 and ebx, 0111111111100000b and eax,BYTE 0000000000011111b add eax,ebx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx jnz .L1 .L2 retn .L3 ; head mov eax,edi and eax,BYTE 11b jz .L4 mov al,[esi] mov ah,[esi+1] mov ebx,eax shr ebx,1 and ebx, 0111111111100000b and eax,BYTE 0000000000011111b add eax,ebx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx .L4 ; save ebp push ebp ; save count push ecx ; unroll four times shr ecx,2 ; point arrays to end lea esi,[esi+ecx*8] lea edi,[edi+ecx*8] ; negative counter xor ebp,ebp sub ebp,ecx .L5 mov eax,[esi+ebp*8] ; agi? mov ecx,[esi+ebp*8+4] mov ebx,eax mov edx,ecx and eax,0FFC0FFC0h and ecx,0FFC0FFC0h shr eax,1 and ebx,001F001Fh shr ecx,1 and edx,001F001Fh add eax,ebx add ecx,edx mov [edi+ebp*8],eax mov [edi+ebp*8+4],ecx inc ebp jnz .L5 ; tail pop ecx .L6 and ecx,BYTE 11b jz .L7 mov al,[esi] mov ah,[esi+1] mov ebx,eax shr ebx,1 and ebx, 0111111111100000b and eax,BYTE 0000000000011111b add eax,ebx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx jmp SHORT .L6 .L7 pop ebp retn _ConvertX86p16_16BGR555: ; check short cmp ecx,BYTE 16 ja .L3 .L1 ; short loop mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b shr ebx,1 and ebx,1111100000b shl edx,10 and edx,0111110000000000b add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx jnz .L1 .L2 retn .L3 ; head mov eax,edi and eax,BYTE 11b jz .L4 mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b shr ebx,1 and ebx,1111100000b shl edx,10 and edx,0111110000000000b add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 dec ecx .L4 ; save count push ecx ; unroll twice shr ecx,1 ; point arrays to end lea esi,[esi+ecx*4] lea edi,[edi+ecx*4] ; negative counter neg ecx jmp SHORT .L6 .L5 mov [edi+ecx*4-4],eax .L6 mov eax,[esi+ecx*4] shr eax,1 mov ebx,[esi+ecx*4] and eax,03E003E0h mov edx,[esi+ecx*4] and ebx,0F800F800h shr ebx,11 and edx,001F001Fh shl edx,10 add eax,ebx add eax,edx inc ecx jnz .L5 mov [edi+ecx*4-4],eax ; tail pop ecx and ecx,BYTE 1 jz .L7 mov al,[esi] mov ah,[esi+1] mov ebx,eax mov edx,eax shr eax,11 and eax,BYTE 11111b shr ebx,1 and ebx,1111100000b shl edx,10 and edx,0111110000000000b add eax,ebx add eax,edx mov [edi],al mov [edi+1],ah add esi,BYTE 2 add edi,BYTE 2 .L7 retn _ConvertX86p16_8RGB332: ; check short cmp ecx,BYTE 16 ja .L3 .L1 ; short loop mov al,[esi+0] mov ah,[esi+1] mov ebx,eax mov edx,eax and eax,BYTE 11000b ; blue shr eax,3 and ebx,11100000000b ; green shr ebx,6 and edx,1110000000000000b ; red shr edx,8 add eax,ebx add eax,edx mov [edi],al add esi,BYTE 2 inc edi dec ecx jnz .L1 .L2 retn .L3 mov eax,edi and eax,BYTE 11b jz .L4 mov al,[esi+0] mov ah,[esi+1] mov ebx,eax mov edx,eax and eax,BYTE 11000b ; blue shr eax,3 and ebx,11100000000b ; green shr ebx,6 and edx,1110000000000000b ; red shr edx,8 add eax,ebx add eax,edx mov [edi],al add esi,BYTE 2 inc edi dec ecx jmp SHORT .L3 .L4 ; save ebp push ebp ; save count push ecx ; unroll 4 times shr ecx,2 ; prestep mov dl,[esi+0] mov bl,[esi+1] mov dh,[esi+2] .L5 shl edx,16 mov bh,[esi+3] shl ebx,16 mov dl,[esi+4] mov dh,[esi+6] mov bl,[esi+5] and edx,00011000000110000001100000011000b mov bh,[esi+7] ror edx,16+3 mov eax,ebx ; setup eax for reds and ebx,00000111000001110000011100000111b and eax,11100000111000001110000011100000b ; reds ror ebx,16-2 add esi,BYTE 8 ror eax,16 add edi,BYTE 4 add eax,ebx mov bl,[esi+1] ; greens add eax,edx mov dl,[esi+0] ; blues mov [edi-4],eax mov dh,[esi+2] dec ecx jnz .L5 ; check tail pop ecx and ecx,BYTE 11b jz .L7 .L6 ; tail mov al,[esi+0] mov ah,[esi+1] mov ebx,eax mov edx,eax and eax,BYTE 11000b ; blue shr eax,3 and ebx,11100000000b ; green shr ebx,6 and edx,1110000000000000b ; red shr edx,8 add eax,ebx add eax,edx mov [edi],al add esi,BYTE 2 inc edi dec ecx jnz .L6 .L7 pop ebp retn %ifidn __OUTPUT_FORMAT__,elf section .note.GNU-stack noalloc noexec nowrite progbits %endif