view src/hermes/mmxp2_32.asm @ 4139:568c9b3c0167 SDL-1.2

* Added configure option --enable-screensaver, to allow enabling the screensaver by default. * Use XResetScreenSaver() instead of disabling screensaver entirely. Full discussion summary from Erik on the SDL mailing list: Current behaviour ================= SDL changes the user's display power management settings without permission from the user and without telling the user. The interface that it uses to do so is DPMSDisable/DPMSEnable, which should only ever be used by configuration utilities like KControl, never by normal application programs, let alone by the libraries that they use. Using an interface that is not at all intended for what SDL tries to achieve means that it will not work as it should. Firstly, the power management is completely disabled during the whole lifetime of the SDL program, not only when it should be. Secondly, it makes SDL non-reentrant, meaning that things will break when multiple SDL programs are clients of the same X server simultaneously. Thirdly, no cleanup mechanism ensures that the setting is restored if the client does not do that (for example if it crashes). In addition to that, this interface is broken on xorg, [http://bugs.freedesktop.org/show_bug.cgi?id=13962], so what SDL tries to do does not work at all on that implementation of the X Window System. (The reason that the DPMSEnable works in KControl is that it calls DPMSSetTimeout immediately after, [http://websvn.kde.org/tags/KDE/3.5.9/kdebase/kcontrol/energy/energy.cpp?annotate=774532#l343]). The problems that the current behaviour causes ============================================== 1. Information leak. When the user is away, someone might see what the user has on the display when the user counts on the screensaver preventing this. This does not even require physical access to the workstation, it is enough to see it from a distance. 2. Draining battery. An SDL program that runs on a laptop will quickly drain the battery while the user is away. The system will soon shut down and require recharging before being usable again, while it should in fact have consumed very little energy if the user's settings would have been obeyed. 3. Wasting energy. Even if battery issues are not considered, energy as such is wasted. 4. Display wear. The display may be worn out. The problems that the current behaviour tries to solve ====================================================== 1. Preventing screensaver while playing movies. Many SDL applications are media players. They have reasons to prevent screensavers from being activated while a movie is being played. When a user clicks on the play button it can be interpreted as saying "play this movie, but do not turn off the display while playing it, because I will watch it even though I do not interact with the system". 2. Preventing screensaver when some input bypasses X. Sometimes SDL uses input from another source than the X server, so that the X server is bypassed. This obviously breaks the screensaver handling. SDL tries to work around that. 3. Preventing screensaver when all input bypasses X. There is something called Direct Graphics Access mode, where a program takes control of both the display and the input devices from the X server. This obviously means that the X server can not handle the screensaver alone, since screensaver handling depends on input handling. SDL does not do what it should to help the X server to handle the screensaver. Nor does SDL take care of screeensaver handling itself. SDL simply disables the screensaver completely. How the problems should be solved ================================= The correct way for an application program to prevent the screensaver under X is to call XResetScreenSaver. This was recently discovered and implemented by the mplayer developers, [http://svn.mplayerhq.hu/mplayer?view=rev&revision=25637]. SDL needs to wrap this in an API call (SDL_ResetScreenSaver) and implement it for the other video targets (if they do not have a corresponding call, SDL should do what it takes on that particular target, for example sending fake key events). 1. When a movie is played, the player should reset the screensaver when the animation is advanced to a new frame. The same applies to anything similar, like slideshows. 2. When the X server is handling input, it must handle all input (keyboards, mice, gamepads, ...). This is necessary, not only to be able to handle the screensaver, but also so that it can send the events to the correct (the currently active) client. If there is an input device that the X server can not handle for some reason (such as lack of Plug and Play capability), the program that handles the device as a workaround must simulate what would happen if the X server would have handled the device, by calling XResetScreenSaver when input is received from the device. 3. When the X server is not handling the input, it depends on the program that does to call XResetScreenSaver whenever an input event occurs. Alternatively the program must handle the screensaver countdown internally and call XActivateScreenSaver.
author Sam Lantinga <slouken@libsdl.org>
date Fri, 29 Feb 2008 13:55:44 +0000
parents 5f463dddee36
children
line wrap: on
line source

;
; pII-optimised MMX format converters for HERMES
; Copyright (c) 1998 Christian Nentwich (c.nentwich@cs.ucl.ac.uk)
;   and (c) 1999 Jonathan Matthew (jmatthew@uq.net.au)
; This source code is licensed under the GNU LGPL
; 
; Please refer to the file COPYING.LIB contained in the distribution for
; licensing conditions		
;
; COPYRIGHT NOTICE
; 
; This file partly contains code that is (c) Intel Corporation, specifically
; the mode detection routine, and the converter to 15 bit (8 pixel
; conversion routine from the mmx programming tutorial pages).
;
;
; These routines aren't exactly pII optimised - it's just that as they
; are, they're terrible on p5 MMXs, but less so on pIIs.  Someone needs to
; optimise them for p5 MMXs..

BITS 32

%include "common.inc"
	
SDL_FUNC _ConvertMMXpII32_24RGB888
SDL_FUNC _ConvertMMXpII32_16RGB565
SDL_FUNC _ConvertMMXpII32_16BGR565
SDL_FUNC _ConvertMMXpII32_16RGB555
SDL_FUNC _ConvertMMXpII32_16BGR555

;; Macros for conversion routines

%macro _push_immq_mask 1
	push dword %1
	push dword %1
%endmacro

%macro load_immq 2
	_push_immq_mask %2
	movq %1, [esp]
%endmacro

%macro pand_immq 2
	_push_immq_mask %2
	pand %1, [esp]
%endmacro

%define CLEANUP_IMMQ_LOADS(num) \
	add esp, byte 8 * num

%define mmx32_rgb888_mask 00ffffffh
%define mmx32_rgb565_b 000000f8h
%define mmx32_rgb565_g 0000fc00h
%define mmx32_rgb565_r 00f80000h

%define mmx32_rgb555_rb 00f800f8h
%define mmx32_rgb555_g 0000f800h
%define mmx32_rgb555_mul 20000008h
%define mmx32_bgr555_mul 00082000h

SECTION .text

_ConvertMMXpII32_24RGB888:

        ; set up mm6 as the mask, mm7 as zero
        load_immq mm6, mmx32_rgb888_mask
        CLEANUP_IMMQ_LOADS(1)
        pxor mm7, mm7

        mov edx, ecx                    ; save ecx
        and ecx, 0fffffffch             ; clear lower two bits
        jnz .L1
        jmp .L2

.L1:

        movq mm0, [esi]                 ; A R G B a r g b
        pand mm0, mm6                   ; 0 R G B 0 r g b
        movq mm1, [esi+8]               ; A R G B a r g b
        pand mm1, mm6                   ; 0 R G B 0 r g b

        movq mm2, mm0                   ; 0 R G B 0 r g b
        punpckhdq mm2, mm7              ; 0 0 0 0 0 R G B
        punpckldq mm0, mm7              ; 0 0 0 0 0 r g b
        psllq mm2, 24                   ; 0 0 R G B 0 0 0
        por mm0, mm2                    ; 0 0 R G B r g b

        movq mm3, mm1                   ; 0 R G B 0 r g b
        psllq mm3, 48                   ; g b 0 0 0 0 0 0
        por mm0, mm3                    ; g b R G B r g b

        movq mm4, mm1                   ; 0 R G B 0 r g b
        punpckhdq mm4, mm7              ; 0 0 0 0 0 R G B
        punpckldq mm1, mm7              ; 0 0 0 0 0 r g b
        psrlq mm1, 16                   ; 0 0 0 R G B 0 r
        psllq mm4, 8                    ; 0 0 0 0 R G B 0
        por mm1, mm4                    ; 0 0 0 0 R G B r

        movq [edi], mm0
        add esi, BYTE 16
        movd [edi+8], mm1
        add edi, BYTE 12
        sub ecx, BYTE 4
        jnz .L1

.L2:
        mov ecx, edx
        and ecx, BYTE 3
        jz .L4
.L3:
        mov al, [esi]
        mov bl, [esi+1]
        mov dl, [esi+2]
        mov [edi], al
        mov [edi+1], bl
        mov [edi+2], dl
        add esi, BYTE 4
        add edi, BYTE 3
        dec ecx
        jnz .L3
.L4:
        return



_ConvertMMXpII32_16RGB565:

        ; set up masks
        load_immq mm5, mmx32_rgb565_b
        load_immq mm6, mmx32_rgb565_g
        load_immq mm7, mmx32_rgb565_r
        CLEANUP_IMMQ_LOADS(3)

        mov edx, ecx
        shr ecx, 2
        jnz .L1
        jmp .L2         ; not necessary at the moment, but doesn't hurt (much)

.L1:
        movq mm0, [esi]         ; argb
        movq mm1, mm0           ; argb
        pand mm0, mm6           ; 00g0
        movq mm3, mm1           ; argb
        pand mm1, mm5           ; 000b
        pand mm3, mm7           ; 0r00
        pslld mm1, 2            ; 0 0 000000bb bbb00000
        por mm0, mm1            ; 0 0 ggggggbb bbb00000
        psrld mm0, 5            ; 0 0 00000ggg gggbbbbb

        movq mm4, [esi+8]       ; argb
        movq mm2, mm4           ; argb
        pand mm4, mm6           ; 00g0
        movq mm1, mm2           ; argb
        pand mm2, mm5           ; 000b
        pand mm1, mm7           ; 0r00
        pslld mm2, 2            ; 0 0 000000bb bbb00000
        por mm4, mm2            ; 0 0 ggggggbb bbb00000
        psrld mm4, 5            ; 0 0 00000ggg gggbbbbb

        packuswb mm3, mm1       ; R 0 r 0
        packssdw mm0, mm4       ; as above.. ish
        por mm0, mm3            ; done.
        movq [edi], mm0

        add esi, 16
        add edi, 8
        dec ecx
        jnz .L1

.L2:
        mov ecx, edx
        and ecx, BYTE 3
        jz .L4
.L3:
        mov al, [esi]
        mov bh, [esi+1]
        mov ah, [esi+2]
        shr al, 3
        and eax, 0F81Fh            ; BYTE?
        shr ebx, 5
        and ebx, 07E0h             ; BYTE?
        add eax, ebx
        mov [edi], al
        mov [edi+1], ah
        add esi, BYTE 4
        add edi, BYTE 2
        dec ecx
        jnz .L3

.L4:
	retn

	
_ConvertMMXpII32_16BGR565:

        load_immq mm5, mmx32_rgb565_r
        load_immq mm6, mmx32_rgb565_g
        load_immq mm7, mmx32_rgb565_b
        CLEANUP_IMMQ_LOADS(3)

        mov edx, ecx
        shr ecx, 2
        jnz .L1
        jmp .L2

.L1:
        movq mm0, [esi]                 ; a r g b
        movq mm1, mm0                   ; a r g b
        pand mm0, mm6                   ; 0 0 g 0
        movq mm3, mm1                   ; a r g b
        pand mm1, mm5                   ; 0 r 0 0
        pand mm3, mm7                   ; 0 0 0 b

        psllq mm3, 16                   ; 0 b 0 0
        psrld mm1, 14                   ; 0 0 000000rr rrr00000
        por mm0, mm1                    ; 0 0 ggggggrr rrr00000
        psrld mm0, 5                    ; 0 0 00000ggg gggrrrrr

        movq mm4, [esi+8]               ; a r g b
        movq mm2, mm4                   ; a r g b
        pand mm4, mm6                   ; 0 0 g 0
        movq mm1, mm2                   ; a r g b
        pand mm2, mm5                   ; 0 r 0 0
        pand mm1, mm7                   ; 0 0 0 b

        psllq mm1, 16                   ; 0 b 0 0
        psrld mm2, 14                   ; 0 0 000000rr rrr00000
        por mm4, mm2                    ; 0 0 ggggggrr rrr00000
        psrld mm4, 5                    ; 0 0 00000ggg gggrrrrr

        packuswb mm3, mm1               ; BBBBB000 00000000 bbbbb000 00000000
        packssdw mm0, mm4               ; 00000GGG GGGRRRRR 00000GGG GGGRRRRR
        por mm0, mm3                    ; BBBBBGGG GGGRRRRR bbbbbggg gggrrrrr
        movq [edi], mm0

        add esi, BYTE 16
        add edi, BYTE 8
        dec ecx
        jnz .L1

.L2:
        and edx, BYTE 3
        jz .L4
.L3:
        mov al, [esi+2]
        mov bh, [esi+1]
        mov ah, [esi]
        shr al, 3
        and eax, 0F81Fh                    ; BYTE ?
        shr ebx, 5
        and ebx, 07E0h                     ; BYTE ?
        add eax, ebx
        mov [edi], al
        mov [edi+1], ah
        add esi, BYTE 4
        add edi, BYTE 2
        dec edx
        jnz .L3

.L4:
        retn

_ConvertMMXpII32_16BGR555:

        ; the 16BGR555 converter is identical to the RGB555 one,
        ; except it uses a different multiplier for the pmaddwd
        ; instruction.  cool huh.

        load_immq mm7, mmx32_bgr555_mul
        jmp _convert_bgr555_cheat

; This is the same as the Intel version.. they obviously went to
; much more trouble to expand/coil the loop than I did, so theirs
; would almost certainly be faster, even if only a little.
; I did rename 'mmx32_rgb555_add' to 'mmx32_rgb555_mul', which is
; (I think) a more accurate name..
_ConvertMMXpII32_16RGB555:

	load_immq mm7, mmx32_rgb555_mul
_convert_bgr555_cheat:
	load_immq mm6, mmx32_rgb555_g
	CLEANUP_IMMQ_LOADS(2)
        
	mov edx,ecx		           ; Save ecx 

        and ecx,DWORD 0fffffff8h            ; clear lower three bits
	jnz .L_OK
        jmp near .L2 

.L_OK:
	
	movq mm2,[esi+8]

	movq mm0,[esi]
	movq mm3,mm2

	pand_immq mm3, mmx32_rgb555_rb
	movq mm1,mm0

	pand_immq mm1, mmx32_rgb555_rb
	pmaddwd mm3,mm7

	CLEANUP_IMMQ_LOADS(2)

	pmaddwd mm1,mm7
	pand mm2,mm6

.L1:
	movq mm4,[esi+24]
	pand mm0,mm6

	movq mm5,[esi+16]
	por mm3,mm2

	psrld mm3,6
	por mm1,mm0

	movq mm0,mm4
	psrld mm1,6

	pand_immq mm0, mmx32_rgb555_rb
	packssdw mm1,mm3

	movq mm3,mm5
	pmaddwd mm0,mm7

	pand_immq mm3, mmx32_rgb555_rb
	pand mm4,mm6

	movq [edi],mm1			
	pmaddwd mm3,mm7

        add esi,BYTE 32
	por mm4,mm0

	pand mm5,mm6
	psrld mm4,6

	movq mm2,[esi+8]
	por mm5,mm3

	movq mm0,[esi]
	psrld mm5,6

	movq mm3,mm2
	movq mm1,mm0

	pand_immq mm3, mmx32_rgb555_rb
	packssdw mm5,mm4

	pand_immq mm1, mmx32_rgb555_rb
	pand mm2,mm6

	CLEANUP_IMMQ_LOADS(4)

	movq [edi+8],mm5
	pmaddwd mm3,mm7

	pmaddwd mm1,mm7
        add edi,BYTE 16
	
        sub ecx,BYTE 8
	jz .L2
        jmp .L1


.L2:	
	mov ecx,edx
	
        and ecx,BYTE 7
	jz .L4
	
.L3:	
	mov ebx,[esi]
        add esi,BYTE 4
	
        mov eax,ebx
        mov edx,ebx

        shr eax,3
        shr edx,6

        and eax,BYTE 0000000000011111b
        and edx,     0000001111100000b

        shr ebx,9

        or eax,edx

        and ebx,     0111110000000000b

        or eax,ebx

        mov [edi],ax
        add edi,BYTE 2

	dec ecx
	jnz .L3	

.L4:		
	retn

%ifidn __OUTPUT_FORMAT__,elf
section .note.GNU-stack noalloc noexec nowrite progbits
%endif