Mercurial > sdl-ios-xcode
view src/audio/SDL_wave.c @ 4483:539f3eca8798
Removed obsolete test program. Ryan may resurrect it when the new multi-mouse code is implemented.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Mon, 05 Jul 2010 22:45:45 -0700 |
parents | f7b03b6838cb |
children | b530ef003506 |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2010 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA Sam Lantinga slouken@libsdl.org */ #include "SDL_config.h" /* Microsoft WAVE file loading routines */ #include "SDL_audio.h" #include "SDL_wave.h" static int ReadChunk(SDL_RWops * src, Chunk * chunk); struct MS_ADPCM_decodestate { Uint8 hPredictor; Uint16 iDelta; Sint16 iSamp1; Sint16 iSamp2; }; static struct MS_ADPCM_decoder { WaveFMT wavefmt; Uint16 wSamplesPerBlock; Uint16 wNumCoef; Sint16 aCoeff[7][2]; /* * * */ struct MS_ADPCM_decodestate state[2]; } MS_ADPCM_state; static int InitMS_ADPCM(WaveFMT * format) { Uint8 *rogue_feel; Uint16 extra_info; int i; /* Set the rogue pointer to the MS_ADPCM specific data */ MS_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding); MS_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels); MS_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency); MS_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate); MS_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign); MS_ADPCM_state.wavefmt.bitspersample = SDL_SwapLE16(format->bitspersample); rogue_feel = (Uint8 *) format + sizeof(*format); if (sizeof(*format) == 16) { extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); } MS_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); MS_ADPCM_state.wNumCoef = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); if (MS_ADPCM_state.wNumCoef != 7) { SDL_SetError("Unknown set of MS_ADPCM coefficients"); return (-1); } for (i = 0; i < MS_ADPCM_state.wNumCoef; ++i) { MS_ADPCM_state.aCoeff[i][0] = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); MS_ADPCM_state.aCoeff[i][1] = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); } return (0); } static Sint32 MS_ADPCM_nibble(struct MS_ADPCM_decodestate *state, Uint8 nybble, Sint16 * coeff) { const Sint32 max_audioval = ((1 << (16 - 1)) - 1); const Sint32 min_audioval = -(1 << (16 - 1)); const Sint32 adaptive[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; Sint32 new_sample, delta; new_sample = ((state->iSamp1 * coeff[0]) + (state->iSamp2 * coeff[1])) / 256; if (nybble & 0x08) { new_sample += state->iDelta * (nybble - 0x10); } else { new_sample += state->iDelta * nybble; } if (new_sample < min_audioval) { new_sample = min_audioval; } else if (new_sample > max_audioval) { new_sample = max_audioval; } delta = ((Sint32) state->iDelta * adaptive[nybble]) / 256; if (delta < 16) { delta = 16; } state->iDelta = (Uint16) delta; state->iSamp2 = state->iSamp1; state->iSamp1 = (Sint16) new_sample; return (new_sample); } static int MS_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len) { struct MS_ADPCM_decodestate *state[2]; Uint8 *freeable, *encoded, *decoded; Sint32 encoded_len, samplesleft; Sint8 nybble, stereo; Sint16 *coeff[2]; Sint32 new_sample; /* Allocate the proper sized output buffer */ encoded_len = *audio_len; encoded = *audio_buf; freeable = *audio_buf; *audio_len = (encoded_len / MS_ADPCM_state.wavefmt.blockalign) * MS_ADPCM_state.wSamplesPerBlock * MS_ADPCM_state.wavefmt.channels * sizeof(Sint16); *audio_buf = (Uint8 *) SDL_malloc(*audio_len); if (*audio_buf == NULL) { SDL_Error(SDL_ENOMEM); return (-1); } decoded = *audio_buf; /* Get ready... Go! */ stereo = (MS_ADPCM_state.wavefmt.channels == 2); state[0] = &MS_ADPCM_state.state[0]; state[1] = &MS_ADPCM_state.state[stereo]; while (encoded_len >= MS_ADPCM_state.wavefmt.blockalign) { /* Grab the initial information for this block */ state[0]->hPredictor = *encoded++; if (stereo) { state[1]->hPredictor = *encoded++; } state[0]->iDelta = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); if (stereo) { state[1]->iDelta = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); } state[0]->iSamp1 = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); if (stereo) { state[1]->iSamp1 = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); } state[0]->iSamp2 = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); if (stereo) { state[1]->iSamp2 = ((encoded[1] << 8) | encoded[0]); encoded += sizeof(Sint16); } coeff[0] = MS_ADPCM_state.aCoeff[state[0]->hPredictor]; coeff[1] = MS_ADPCM_state.aCoeff[state[1]->hPredictor]; /* Store the two initial samples we start with */ decoded[0] = state[0]->iSamp2 & 0xFF; decoded[1] = state[0]->iSamp2 >> 8; decoded += 2; if (stereo) { decoded[0] = state[1]->iSamp2 & 0xFF; decoded[1] = state[1]->iSamp2 >> 8; decoded += 2; } decoded[0] = state[0]->iSamp1 & 0xFF; decoded[1] = state[0]->iSamp1 >> 8; decoded += 2; if (stereo) { decoded[0] = state[1]->iSamp1 & 0xFF; decoded[1] = state[1]->iSamp1 >> 8; decoded += 2; } /* Decode and store the other samples in this block */ samplesleft = (MS_ADPCM_state.wSamplesPerBlock - 2) * MS_ADPCM_state.wavefmt.channels; while (samplesleft > 0) { nybble = (*encoded) >> 4; new_sample = MS_ADPCM_nibble(state[0], nybble, coeff[0]); decoded[0] = new_sample & 0xFF; new_sample >>= 8; decoded[1] = new_sample & 0xFF; decoded += 2; nybble = (*encoded) & 0x0F; new_sample = MS_ADPCM_nibble(state[1], nybble, coeff[1]); decoded[0] = new_sample & 0xFF; new_sample >>= 8; decoded[1] = new_sample & 0xFF; decoded += 2; ++encoded; samplesleft -= 2; } encoded_len -= MS_ADPCM_state.wavefmt.blockalign; } SDL_free(freeable); return (0); } struct IMA_ADPCM_decodestate { Sint32 sample; Sint8 index; }; static struct IMA_ADPCM_decoder { WaveFMT wavefmt; Uint16 wSamplesPerBlock; /* * * */ struct IMA_ADPCM_decodestate state[2]; } IMA_ADPCM_state; static int InitIMA_ADPCM(WaveFMT * format) { Uint8 *rogue_feel; Uint16 extra_info; /* Set the rogue pointer to the IMA_ADPCM specific data */ IMA_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding); IMA_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels); IMA_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency); IMA_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate); IMA_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign); IMA_ADPCM_state.wavefmt.bitspersample = SDL_SwapLE16(format->bitspersample); rogue_feel = (Uint8 *) format + sizeof(*format); if (sizeof(*format) == 16) { extra_info = ((rogue_feel[1] << 8) | rogue_feel[0]); rogue_feel += sizeof(Uint16); } IMA_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1] << 8) | rogue_feel[0]); return (0); } static Sint32 IMA_ADPCM_nibble(struct IMA_ADPCM_decodestate *state, Uint8 nybble) { const Sint32 max_audioval = ((1 << (16 - 1)) - 1); const Sint32 min_audioval = -(1 << (16 - 1)); const int index_table[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8 }; const Sint32 step_table[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; Sint32 delta, step; /* Compute difference and new sample value */ step = step_table[state->index]; delta = step >> 3; if (nybble & 0x04) delta += step; if (nybble & 0x02) delta += (step >> 1); if (nybble & 0x01) delta += (step >> 2); if (nybble & 0x08) delta = -delta; state->sample += delta; /* Update index value */ state->index += index_table[nybble]; if (state->index > 88) { state->index = 88; } else if (state->index < 0) { state->index = 0; } /* Clamp output sample */ if (state->sample > max_audioval) { state->sample = max_audioval; } else if (state->sample < min_audioval) { state->sample = min_audioval; } return (state->sample); } /* Fill the decode buffer with a channel block of data (8 samples) */ static void Fill_IMA_ADPCM_block(Uint8 * decoded, Uint8 * encoded, int channel, int numchannels, struct IMA_ADPCM_decodestate *state) { int i; Sint8 nybble; Sint32 new_sample; decoded += (channel * 2); for (i = 0; i < 4; ++i) { nybble = (*encoded) & 0x0F; new_sample = IMA_ADPCM_nibble(state, nybble); decoded[0] = new_sample & 0xFF; new_sample >>= 8; decoded[1] = new_sample & 0xFF; decoded += 2 * numchannels; nybble = (*encoded) >> 4; new_sample = IMA_ADPCM_nibble(state, nybble); decoded[0] = new_sample & 0xFF; new_sample >>= 8; decoded[1] = new_sample & 0xFF; decoded += 2 * numchannels; ++encoded; } } static int IMA_ADPCM_decode(Uint8 ** audio_buf, Uint32 * audio_len) { struct IMA_ADPCM_decodestate *state; Uint8 *freeable, *encoded, *decoded; Sint32 encoded_len, samplesleft; unsigned int c, channels; /* Check to make sure we have enough variables in the state array */ channels = IMA_ADPCM_state.wavefmt.channels; if (channels > SDL_arraysize(IMA_ADPCM_state.state)) { SDL_SetError("IMA ADPCM decoder can only handle %d channels", SDL_arraysize(IMA_ADPCM_state.state)); return (-1); } state = IMA_ADPCM_state.state; /* Allocate the proper sized output buffer */ encoded_len = *audio_len; encoded = *audio_buf; freeable = *audio_buf; *audio_len = (encoded_len / IMA_ADPCM_state.wavefmt.blockalign) * IMA_ADPCM_state.wSamplesPerBlock * IMA_ADPCM_state.wavefmt.channels * sizeof(Sint16); *audio_buf = (Uint8 *) SDL_malloc(*audio_len); if (*audio_buf == NULL) { SDL_Error(SDL_ENOMEM); return (-1); } decoded = *audio_buf; /* Get ready... Go! */ while (encoded_len >= IMA_ADPCM_state.wavefmt.blockalign) { /* Grab the initial information for this block */ for (c = 0; c < channels; ++c) { /* Fill the state information for this block */ state[c].sample = ((encoded[1] << 8) | encoded[0]); encoded += 2; if (state[c].sample & 0x8000) { state[c].sample -= 0x10000; } state[c].index = *encoded++; /* Reserved byte in buffer header, should be 0 */ if (*encoded++ != 0) { /* Uh oh, corrupt data? Buggy code? */ ; } /* Store the initial sample we start with */ decoded[0] = (Uint8) (state[c].sample & 0xFF); decoded[1] = (Uint8) (state[c].sample >> 8); decoded += 2; } /* Decode and store the other samples in this block */ samplesleft = (IMA_ADPCM_state.wSamplesPerBlock - 1) * channels; while (samplesleft > 0) { for (c = 0; c < channels; ++c) { Fill_IMA_ADPCM_block(decoded, encoded, c, channels, &state[c]); encoded += 4; samplesleft -= 8; } decoded += (channels * 8 * 2); } encoded_len -= IMA_ADPCM_state.wavefmt.blockalign; } SDL_free(freeable); return (0); } SDL_AudioSpec * SDL_LoadWAV_RW(SDL_RWops * src, int freesrc, SDL_AudioSpec * spec, Uint8 ** audio_buf, Uint32 * audio_len) { int was_error; Chunk chunk; int lenread; int IEEE_float_encoded, MS_ADPCM_encoded, IMA_ADPCM_encoded; int samplesize; /* WAV magic header */ Uint32 RIFFchunk; Uint32 wavelen = 0; Uint32 WAVEmagic; Uint32 headerDiff = 0; /* FMT chunk */ WaveFMT *format = NULL; /* Make sure we are passed a valid data source */ was_error = 0; if (src == NULL) { was_error = 1; goto done; } /* Check the magic header */ RIFFchunk = SDL_ReadLE32(src); wavelen = SDL_ReadLE32(src); if (wavelen == WAVE) { /* The RIFFchunk has already been read */ WAVEmagic = wavelen; wavelen = RIFFchunk; RIFFchunk = RIFF; } else { WAVEmagic = SDL_ReadLE32(src); } if ((RIFFchunk != RIFF) || (WAVEmagic != WAVE)) { SDL_SetError("Unrecognized file type (not WAVE)"); was_error = 1; goto done; } headerDiff += sizeof(Uint32); /* for WAVE */ /* Read the audio data format chunk */ chunk.data = NULL; do { if (chunk.data != NULL) { SDL_free(chunk.data); chunk.data = NULL; } lenread = ReadChunk(src, &chunk); if (lenread < 0) { was_error = 1; goto done; } /* 2 Uint32's for chunk header+len, plus the lenread */ headerDiff += lenread + 2 * sizeof(Uint32); } while ((chunk.magic == FACT) || (chunk.magic == LIST)); /* Decode the audio data format */ format = (WaveFMT *) chunk.data; if (chunk.magic != FMT) { SDL_SetError("Complex WAVE files not supported"); was_error = 1; goto done; } IEEE_float_encoded = MS_ADPCM_encoded = IMA_ADPCM_encoded = 0; switch (SDL_SwapLE16(format->encoding)) { case PCM_CODE: /* We can understand this */ break; case IEEE_FLOAT_CODE: IEEE_float_encoded = 1; /* We can understand this */ break; case MS_ADPCM_CODE: /* Try to understand this */ if (InitMS_ADPCM(format) < 0) { was_error = 1; goto done; } MS_ADPCM_encoded = 1; break; case IMA_ADPCM_CODE: /* Try to understand this */ if (InitIMA_ADPCM(format) < 0) { was_error = 1; goto done; } IMA_ADPCM_encoded = 1; break; case MP3_CODE: SDL_SetError("MPEG Layer 3 data not supported", SDL_SwapLE16(format->encoding)); was_error = 1; goto done; default: SDL_SetError("Unknown WAVE data format: 0x%.4x", SDL_SwapLE16(format->encoding)); was_error = 1; goto done; } SDL_memset(spec, 0, (sizeof *spec)); spec->freq = SDL_SwapLE32(format->frequency); if (IEEE_float_encoded) { if ((SDL_SwapLE16(format->bitspersample)) != 32) { was_error = 1; } else { spec->format = AUDIO_F32; } } else { switch (SDL_SwapLE16(format->bitspersample)) { case 4: if (MS_ADPCM_encoded || IMA_ADPCM_encoded) { spec->format = AUDIO_S16; } else { was_error = 1; } break; case 8: spec->format = AUDIO_U8; break; case 16: spec->format = AUDIO_S16; break; case 32: spec->format = AUDIO_S32; break; default: was_error = 1; break; } } if (was_error) { SDL_SetError("Unknown %d-bit PCM data format", SDL_SwapLE16(format->bitspersample)); goto done; } spec->channels = (Uint8) SDL_SwapLE16(format->channels); spec->samples = 4096; /* Good default buffer size */ /* Read the audio data chunk */ *audio_buf = NULL; do { if (*audio_buf != NULL) { SDL_free(*audio_buf); *audio_buf = NULL; } lenread = ReadChunk(src, &chunk); if (lenread < 0) { was_error = 1; goto done; } *audio_len = lenread; *audio_buf = chunk.data; if (chunk.magic != DATA) headerDiff += lenread + 2 * sizeof(Uint32); } while (chunk.magic != DATA); headerDiff += 2 * sizeof(Uint32); /* for the data chunk and len */ if (MS_ADPCM_encoded) { if (MS_ADPCM_decode(audio_buf, audio_len) < 0) { was_error = 1; goto done; } } if (IMA_ADPCM_encoded) { if (IMA_ADPCM_decode(audio_buf, audio_len) < 0) { was_error = 1; goto done; } } /* Don't return a buffer that isn't a multiple of samplesize */ samplesize = ((SDL_AUDIO_BITSIZE(spec->format)) / 8) * spec->channels; *audio_len &= ~(samplesize - 1); done: if (format != NULL) { SDL_free(format); } if (src) { if (freesrc) { SDL_RWclose(src); } else { /* seek to the end of the file (given by the RIFF chunk) */ SDL_RWseek(src, wavelen - chunk.length - headerDiff, RW_SEEK_CUR); } } if (was_error) { spec = NULL; } return (spec); } /* Since the WAV memory is allocated in the shared library, it must also be freed here. (Necessary under Win32, VC++) */ void SDL_FreeWAV(Uint8 * audio_buf) { if (audio_buf != NULL) { SDL_free(audio_buf); } } static int ReadChunk(SDL_RWops * src, Chunk * chunk) { chunk->magic = SDL_ReadLE32(src); chunk->length = SDL_ReadLE32(src); chunk->data = (Uint8 *) SDL_malloc(chunk->length); if (chunk->data == NULL) { SDL_Error(SDL_ENOMEM); return (-1); } if (SDL_RWread(src, chunk->data, chunk->length, 1) != 1) { SDL_Error(SDL_EFREAD); SDL_free(chunk->data); chunk->data = NULL; return (-1); } return (chunk->length); } /* vi: set ts=4 sw=4 expandtab: */