view test/testalpha.c @ 942:41a59de7f2ed

Here are patches for SDL12 and SDL_mixer for 4 or 6 channel surround sound on Linux using the Alsa driver. To use them, naturally you need a sound card that will do 4 or 6 channels and probably also a recent version of the Alsa drivers and library. Since the only SDL output driver that knows about surround sound is the Alsa driver, you���ll want to choose it, using: export SDL_AUDIODRIVER=alsa There are no syntactic changes to the programming API. No new library calls, no differences in arguments. There are two semantic changes: (1) For library calls with number of channels as an argument, formerly you could use only 1 or 2 for the number of channels. Now you can also use 4 or 6. (2) The two "left" and "right" arguments to Mix_SetPanning, for the case of 4 or 6 channels, no longer simply control the volumes of the left and right channels. Now the "left" argument is converted to an angle and Mix_SetPosition is called, and the "right" argu- ment is ignored. With two exceptions, so far as I know, the modified SDL12 and SDL_mixer work the same way as the original versions, when opened for 1 or 2 channel output. The two exceptions are bugs which I fixed. Well, the first, anyway, is a bug for sure. When rate conversions up or down by a factor of two are applied (in src/audio/SDL_audiocvt.c), streams with different numbers of channels (that is, mono and stereo) are treated the same way: either each sample is copied or every other sample is omitted. This is ok for mono, but for stereo, it is frames that should be copied or omitted, where by "frame" I mean a portion of the stream containing one sample for each channel. (In the SDL source, confusingly, sometimes frames are called "samples".) So for these rate conversions, stereo streams have to be treated differently, and they are, in my modified version. The other problem that might be characterized as a bug arises when SDL_mixer is passed a multichannel chunk which does not have an integral number of frames. Due to the way the effect_position code loops over frames, when the chunk ends with a partial frame, memory outside the chunk buffer will be accessed. In the case of stereo, it���s possible that because malloc may give more memory than requested, this potential problem never actually causes a segment fault. I don���t know. For 6 channel chunks, I do know, and it does cause segment faults. If SDL_mixer is passed defective chunks and this causes a segment fault, arguably, that���s not a bug in SDL_mixer. Still, whether or not it counts as a bug, it���s easy to protect against, so why not? I added code in mixer.c to discard any partial frame at the end of a chunk. Then what about when SDL or SDL_mixer is opened for 4 or 6 chan- nel output? What happens with the parts of the current library designed for stereo? I don���t know whether I���ve covered all the bases, but I���ve tried: (1) For playing 2 channel waves, or other cases where SDL knows it has to match up a 2 channel source with a 4 or 6 channel output, I���ve added code in SDL_audiocvt.c to make the necessary conversions. (2) For playing midis using timidity, I���ve converted timidity to do 4 or 6 channel output, upon request. (3) For playing mods using mikmod, I put ad hoc code in music.c to convert the stereo output that mikmod produces to 4 or 6 chan- nels. Obviously it would be better to change the mikmod code to mix down into 4 or 6 channels, but I have a hard time following the code in mikmod, so I didn���t do that. (4) For playing mp3s, I put ad hoc code in smpeg to copy channels in the case when 4 or 6 channel output is needed. (5) There seems to be no problem with .ogg files - stereo .oggs can be up converted as .wavs are. (6) The effect_position code in SDL_mixer is now generalized to in- clude the cases of 4 and 6 channel streams. I���ve done a very limited amount of compatibility testing for some of the games using SDL I happen to have. For details, see the file TESTS. I���ve put into a separate archive, Surround-SDL-testfiles.tgz, a couple of 6 channel wave files for testing and a 6 channel ogg file. If you have the right hardware and version of Alsa, you should be able to play the wave files with the Alsa utility aplay (and hear all channels, except maybe lfe, for chan-id.wav, since it���s rather faint). Don���t expect aplay to give good sound, though. There���s something wrong with the current version of aplay. The canyon.ogg file is to test loading of 6 channel oggs. After patching and compiling, you can play it with playmus. (My version of ogg123 will not play it, and I had to patch mplayer to get it to play 6 channel oggs.) Greg Lee <greg@ling.lll.hawaii.edu> Thus, July 1, 2004
author Sam Lantinga <slouken@libsdl.org>
date Sat, 21 Aug 2004 12:27:02 +0000
parents 05c551e5bc64
children be9c9c8f6d53
line wrap: on
line source


/* Simple program:  Fill a colormap with gray and stripe it down the screen,
		    Then move an alpha valued sprite around the screen.
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "SDL.h"

#define FRAME_TICKS	(1000/30)		/* 30 frames/second */

/* Create a "light" -- a yellowish surface with variable alpha */
SDL_Surface *CreateLight(SDL_Surface *screen, int radius)
{
	Uint8  trans, alphamask;
	int    range, addition;
	int    xdist, ydist;
	Uint16 x, y;
	Uint16 skip;
	Uint32 pixel;
	SDL_Surface *light;

#ifdef LIGHT_16BIT
	Uint16 *buf;

	/* Create a 16 (4/4/4/4) bpp square with a full 4-bit alpha channel */
	/* Note: this isn't any faster than a 32 bit alpha surface */
	alphamask = 0x0000000F;
	light = SDL_CreateRGBSurface(SDL_SWSURFACE, 2*radius, 2*radius, 16,
			0x0000F000, 0x00000F00, 0x000000F0, alphamask);
#else
	Uint32 *buf;

	/* Create a 32 (8/8/8/8) bpp square with a full 8-bit alpha channel */
	alphamask = 0x000000FF;
	light = SDL_CreateRGBSurface(SDL_SWSURFACE, 2*radius, 2*radius, 32,
			0xFF000000, 0x00FF0000, 0x0000FF00, alphamask);
	if ( light == NULL ) {
		fprintf(stderr, "Couldn't create light: %s\n", SDL_GetError());
		return(NULL);
	}
#endif

	/* Fill with a light yellow-orange color */
	skip = light->pitch-(light->w*light->format->BytesPerPixel);
#ifdef LIGHT_16BIT
	buf = (Uint16 *)light->pixels;
#else
	buf = (Uint32 *)light->pixels;
#endif
        /* Get a tranparent pixel value - we'll add alpha later */
	pixel = SDL_MapRGBA(light->format, 0xFF, 0xDD, 0x88, 0);
	for ( y=0; y<light->h; ++y ) {
		for ( x=0; x<light->w; ++x ) {
			*buf++ = pixel;
		}
		buf += skip;	/* Almost always 0, but just in case... */
	}

	/* Calculate alpha values for the surface. */
#ifdef LIGHT_16BIT
	buf = (Uint16 *)light->pixels;
#else
	buf = (Uint32 *)light->pixels;
#endif
	for ( y=0; y<light->h; ++y ) {
		for ( x=0; x<light->w; ++x ) {
			/* Slow distance formula (from center of light) */
			xdist = x-(light->w/2);
			ydist = y-(light->h/2);
			range = (int)sqrt(xdist*xdist+ydist*ydist);

			/* Scale distance to range of transparency (0-255) */
			if ( range > radius ) {
				trans = alphamask;
			} else {
				/* Increasing transparency with distance */
				trans = (Uint8)((range*alphamask)/radius);

				/* Lights are very transparent */
				addition = (alphamask+1)/8;
				if ( (int)trans+addition > alphamask ) {
					trans = alphamask;
				} else {
					trans += addition;
				}
			}
			/* We set the alpha component as the right N bits */
			*buf++ |= (255-trans);
		}
		buf += skip;	/* Almost always 0, but just in case... */
	}
	/* Enable RLE acceleration of this alpha surface */
	SDL_SetAlpha(light, SDL_SRCALPHA|SDL_RLEACCEL, 0);

	/* We're done! */
	return(light);
}

static Uint32 flashes = 0;
static Uint32 flashtime = 0;

void FlashLight(SDL_Surface *screen, SDL_Surface *light, int x, int y)
{
	SDL_Rect position;
	Uint32   ticks1;
	Uint32   ticks2;

	/* Easy, center light */
	position.x = x-(light->w/2);
	position.y = y-(light->h/2);
	position.w = light->w;
	position.h = light->h;
	ticks1 = SDL_GetTicks();
	SDL_BlitSurface(light, NULL, screen, &position);
	ticks2 = SDL_GetTicks();
	SDL_UpdateRects(screen, 1, &position);
	++flashes;

	/* Update time spend doing alpha blitting */
	flashtime += (ticks2-ticks1);
}

static int sprite_visible = 0;
static SDL_Surface *sprite;
static SDL_Surface *backing;
static SDL_Rect    position;
static int         x_vel, y_vel;
static int	   alpha_vel;

int LoadSprite(SDL_Surface *screen, char *file)
{
	SDL_Surface *converted;

	/* Load the sprite image */
	sprite = SDL_LoadBMP(file);
	if ( sprite == NULL ) {
		fprintf(stderr, "Couldn't load %s: %s", file, SDL_GetError());
		return(-1);
	}

	/* Set transparent pixel as the pixel at (0,0) */
	if ( sprite->format->palette ) {
		SDL_SetColorKey(sprite, SDL_SRCCOLORKEY,
						*(Uint8 *)sprite->pixels);
	}

	/* Convert sprite to video format */
	converted = SDL_DisplayFormat(sprite);
	SDL_FreeSurface(sprite);
	if ( converted == NULL ) {
		fprintf(stderr, "Couldn't convert background: %s\n",
							SDL_GetError());
		return(-1);
	}
	sprite = converted;

	/* Create the background */
	backing = SDL_CreateRGBSurface(SDL_SWSURFACE, sprite->w, sprite->h, 8,
								0, 0, 0, 0);
	if ( backing == NULL ) {
		fprintf(stderr, "Couldn't create background: %s\n",
							SDL_GetError());
		SDL_FreeSurface(sprite);
		return(-1);
	}

	/* Convert background to video format */
	converted = SDL_DisplayFormat(backing);
	SDL_FreeSurface(backing);
	if ( converted == NULL ) {
		fprintf(stderr, "Couldn't convert background: %s\n",
							SDL_GetError());
		SDL_FreeSurface(sprite);
		return(-1);
	}
	backing = converted;

	/* Set the initial position of the sprite */
	position.x = (screen->w-sprite->w)/2;
	position.y = (screen->h-sprite->h)/2;
	position.w = sprite->w;
	position.h = sprite->h;
	x_vel = 0; y_vel = 0;
	alpha_vel = 1;

	/* We're ready to roll. :) */
	return(0);
}

void AttractSprite(Uint16 x, Uint16 y)
{
	x_vel = ((int)x-position.x)/10;
	y_vel = ((int)y-position.y)/10;
}

void MoveSprite(SDL_Surface *screen, SDL_Surface *light)
{
	SDL_Rect updates[2];
	int alpha;

	/* Erase the sprite if it was visible */
	if ( sprite_visible ) {
		updates[0] = position;
		SDL_BlitSurface(backing, NULL, screen, &updates[0]);
	} else {
		updates[0].x = 0; updates[0].y = 0;
		updates[0].w = 0; updates[0].h = 0;
		sprite_visible = 1;
	}

	/* Since the sprite is off the screen, we can do other drawing
	   without being overwritten by the saved area behind the sprite.
	 */
	if ( light != NULL ) {
		int x, y;

		SDL_GetMouseState(&x, &y);
		FlashLight(screen, light, x, y);
	}
	   
	/* Move the sprite, bounce at the wall */
	position.x += x_vel;
	if ( (position.x < 0) || (position.x >= screen->w) ) {
		x_vel = -x_vel;
		position.x += x_vel;
	}
	position.y += y_vel;
	if ( (position.y < 0) || (position.y >= screen->h) ) {
		y_vel = -y_vel;
		position.y += y_vel;
	}

	/* Update transparency (fade in and out) */
	alpha = sprite->format->alpha;
	if ( (alpha+alpha_vel) < 0 ) {
		alpha_vel = -alpha_vel;
	} else
	if ( (alpha+alpha_vel) > 255 ) {
		alpha_vel = -alpha_vel;
	}
	SDL_SetAlpha(sprite, SDL_SRCALPHA, (Uint8)(alpha+alpha_vel));

	/* Save the area behind the sprite */
	updates[1] = position;
	SDL_BlitSurface(screen, &updates[1], backing, NULL);
	
	/* Blit the sprite onto the screen */
	updates[1] = position;
	SDL_BlitSurface(sprite, NULL, screen, &updates[1]);

	/* Make it so! */
	SDL_UpdateRects(screen, 2, updates);
}

void WarpSprite(SDL_Surface *screen, int x, int y)
{
	SDL_Rect updates[2];

	/* Erase, move, Draw, update */
	updates[0] = position;
	SDL_BlitSurface(backing, NULL, screen, &updates[0]);
	position.x = x-sprite->w/2;	/* Center about X */
	position.y = y-sprite->h/2;	/* Center about Y */
	updates[1] = position;
	SDL_BlitSurface(screen, &updates[1], backing, NULL);
	updates[1] = position;
	SDL_BlitSurface(sprite, NULL, screen, &updates[1]);
	SDL_UpdateRects(screen, 2, updates);
}

int main(int argc, char *argv[])
{
	const SDL_VideoInfo *info;
	SDL_Surface *screen;
	Uint8  video_bpp;
	Uint32 videoflags;
	Uint8 *buffer;
	int    i, k, done;
	SDL_Event event;
	SDL_Surface *light;
	int mouse_pressed;
	Uint32 ticks, lastticks;
	Uint16 *buffer16;
        Uint16 color;
        Uint8  gradient;


	/* Initialize SDL */
	if ( SDL_Init(SDL_INIT_VIDEO) < 0 ) {
		fprintf(stderr, "Couldn't initialize SDL: %s\n",SDL_GetError());
		exit(1);
	}
	atexit(SDL_Quit);

	/* Alpha blending doesn't work well at 8-bit color */
	info = SDL_GetVideoInfo();
	if ( info->vfmt->BitsPerPixel > 8 ) {
		video_bpp = info->vfmt->BitsPerPixel;
	} else {
		video_bpp = 16;
                fprintf(stderr, "forced 16 bpp mode\n");
	}
	videoflags = SDL_SWSURFACE;
	while ( argc > 1 ) {
		--argc;
		if ( strcmp(argv[argc-1], "-bpp") == 0 ) {
			video_bpp = atoi(argv[argc]);
                        if (video_bpp<=8) {
                            video_bpp=16;
                            fprintf(stderr, "forced 16 bpp mode\n");
                        }
			--argc;
		} else
		if ( strcmp(argv[argc], "-hw") == 0 ) {
			videoflags |= SDL_HWSURFACE;
		} else
		if ( strcmp(argv[argc], "-warp") == 0 ) {
			videoflags |= SDL_HWPALETTE;
		} else
		if ( strcmp(argv[argc], "-fullscreen") == 0 ) {
			videoflags |= SDL_FULLSCREEN;
		} else {
			fprintf(stderr, 
			"Usage: %s [-bpp N] [-warp] [-hw] [-fullscreen]\n",
								argv[0]);
			exit(1);
		}
	}

	/* Set 640x480 video mode */
	if ( (screen=SDL_SetVideoMode(640,480,video_bpp,videoflags)) == NULL ) {
		fprintf(stderr, "Couldn't set 640x480x%d video mode: %s\n",
						video_bpp, SDL_GetError());
		exit(2);
	}

	/* Set the surface pixels and refresh! */
	if ( SDL_LockSurface(screen) < 0 ) {
		fprintf(stderr, "Couldn't lock the display surface: %s\n",
							SDL_GetError());
		exit(2);
	}
	buffer=(Uint8 *)screen->pixels;
	if (screen->format->BytesPerPixel!=2) {
		for ( i=0; i<screen->h; ++i ) {
			memset(buffer,(i*255)/screen->h, screen->pitch);
			buffer += screen->pitch;
		}
	}
        else
        {
		for ( i=0; i<screen->h; ++i ) {
			gradient=((i*255)/screen->h);
                        color = SDL_MapRGB(screen->format, gradient, gradient, gradient);
                        buffer16=(Uint16*)buffer;
                        for (k=0; k<screen->w; k++)
                        {
                            *(buffer16+k)=color;
                        }
			buffer += screen->pitch;
		}
        }

	SDL_UnlockSurface(screen);
	SDL_UpdateRect(screen, 0, 0, 0, 0);

	/* Create the light */
	light = CreateLight(screen, 82);
	if ( light == NULL ) {
		exit(1);
	}

	/* Load the sprite */
	if ( LoadSprite(screen, "icon.bmp") < 0 ) {
		SDL_FreeSurface(light);
		exit(1);
	}

	/* Print out information about our surfaces */
	printf("Screen is at %d bits per pixel\n",screen->format->BitsPerPixel);
	if ( (screen->flags & SDL_HWSURFACE) == SDL_HWSURFACE ) {
		printf("Screen is in video memory\n");
	} else {
		printf("Screen is in system memory\n");
	}
	if ( (screen->flags & SDL_DOUBLEBUF) == SDL_DOUBLEBUF ) {
		printf("Screen has double-buffering enabled\n");
	}
	if ( (sprite->flags & SDL_HWSURFACE) == SDL_HWSURFACE ) {
		printf("Sprite is in video memory\n");
	} else {
		printf("Sprite is in system memory\n");
	}

	/* Run a sample blit to trigger blit acceleration */
	{ SDL_Rect dst;
		dst.x = 0;
		dst.y = 0;
		dst.w = sprite->w;
		dst.h = sprite->h;
		SDL_BlitSurface(sprite, NULL, screen, &dst);
		SDL_FillRect(screen, &dst, 0);
	}
	if ( (sprite->flags & SDL_HWACCEL) == SDL_HWACCEL ) {
		printf("Sprite blit uses hardware alpha acceleration\n");
	} else {
		printf("Sprite blit dosn't uses hardware alpha acceleration\n");
	}

	/* Set a clipping rectangle to clip the outside edge of the screen */
	{ SDL_Rect clip;
		clip.x = 32;
		clip.y = 32;
		clip.w = screen->w-(2*32);
		clip.h = screen->h-(2*32);
		SDL_SetClipRect(screen, &clip);
	}

	/* Wait for a keystroke */
	lastticks = SDL_GetTicks();
	done = 0;
	mouse_pressed = 0;
	while ( !done ) {
		/* Update the frame -- move the sprite */
		if ( mouse_pressed ) {
			MoveSprite(screen, light);
			mouse_pressed = 0;
		} else {
			MoveSprite(screen, NULL);
		}

		/* Slow down the loop to 30 frames/second */
		ticks = SDL_GetTicks();
		if ( (ticks-lastticks) < FRAME_TICKS ) {
#ifdef CHECK_SLEEP_GRANULARITY
fprintf(stderr, "Sleeping %d ticks\n", FRAME_TICKS-(ticks-lastticks));
#endif
			SDL_Delay(FRAME_TICKS-(ticks-lastticks));
#ifdef CHECK_SLEEP_GRANULARITY
fprintf(stderr, "Slept %d ticks\n", (SDL_GetTicks()-ticks));
#endif
		}
		lastticks = ticks;

		/* Check for events */
		while ( SDL_PollEvent(&event) ) {
			switch (event.type) {
				/* Attract sprite while mouse is held down */
				case SDL_MOUSEMOTION:
					if (event.motion.state != 0) {
						AttractSprite(event.motion.x,
								event.motion.y);
						mouse_pressed = 1;
					}
					break;
				case SDL_MOUSEBUTTONDOWN:
					if ( event.button.button == 1 ) {
						AttractSprite(event.button.x,
						              event.button.y);
						mouse_pressed = 1;
					} else {
						SDL_Rect area;

						area.x = event.button.x-16;
						area.y = event.button.y-16;
						area.w = 32;
						area.h = 32;
						SDL_FillRect(screen, &area, 0);
						SDL_UpdateRects(screen,1,&area);
					}
					break;
				case SDL_KEYDOWN:
					/* Any keypress quits the app... */
				case SDL_QUIT:
					done = 1;
					break;
				default:
					break;
			}
		}
	}
	SDL_FreeSurface(light);
	SDL_FreeSurface(sprite);
	SDL_FreeSurface(backing);

	/* Print out some timing information */
	if ( flashes > 0 ) {
		printf("%d alpha blits, ~%4.4f ms per blit\n", 
			flashes, (float)flashtime/flashes);
	}
	return(0);
}