view src/video/e_pow.h @ 1348:40d0975c1769

Date: Mon, 6 Feb 2006 11:41:04 -0500 From: "mystml@adinet.com.uy" Subject: [SDL] ALT-F4 using DirectX My game isn't getting SDL_QUIT when I press ALT-F4 using the DirectX driver; it does get SDL_QUIT when I press the red X in the window. I tracked this down to DX5_HandleMessage() in SDL_dx5events.c; WM_SYSKEYDOWN is being trapped and ignored which causes Windows not to post a WM_CLOSE, hence no SDL_QUIT is being generated. The relevant code is this : /* The keyboard is handled via DirectInput */ case WM_SYSKEYUP: case WM_SYSKEYDOWN: case WM_KEYUP: case WM_KEYDOWN: { /* Ignore windows keyboard messages */; } return(0); If I comment the WM_SYSKEYDOWN case, it falls through DefWindowProc() and ALT-F4 starts working again. I'm not sure about the best way to fix this. One option is handling ALT-F4 as a particular case somehow, but doesn't sound good. Another option would be to handle WM_SYSKEYDOWN separately and breaking instead of returning 0, so processing falls through and goes to DefWindowProc which does The Right Thing (TM). This seems to be the minimal change that makes ALT-F4 work and normal keyboard input continues to work. Does this sound reasonable? Am I overlooking anything? Do I submit a patch? --Gabriel
author Sam Lantinga <slouken@libsdl.org>
date Wed, 08 Feb 2006 17:19:43 +0000
parents 7f32b9bede06
children 7a610f25c12f
line wrap: on
line source

/* @(#)e_pow.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
#endif

/* __ieee754_pow(x,y) return x**y
 *
 *		      n
 * Method:  Let x =  2   * (1+f)
 *	1. Compute and return log2(x) in two pieces:
 *		log2(x) = w1 + w2,
 *	   where w1 has 53-24 = 29 bit trailing zeros.
 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 *	   arithmetic, where |y'|<=0.5.
 *	3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *	1.  (anything) ** 0  is 1
 *	2.  (anything) ** 1  is itself
 *	3.  (anything) ** NAN is NAN
 *	4.  NAN ** (anything except 0) is NAN
 *	5.  +-(|x| > 1) **  +INF is +INF
 *	6.  +-(|x| > 1) **  -INF is +0
 *	7.  +-(|x| < 1) **  +INF is +0
 *	8.  +-(|x| < 1) **  -INF is +INF
 *	9.  +-1         ** +-INF is NAN
 *	10. +0 ** (+anything except 0, NAN)               is +0
 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *	12. +0 ** (-anything except 0, NAN)               is +INF
 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *	15. +INF ** (+anything except 0,NAN) is +INF
 *	16. +INF ** (-anything except 0,NAN) is +0
 *	17. -INF ** (anything)  = -0 ** (-anything)
 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *	pow(x,y) returns x**y nearly rounded. In particular
 *			pow(integer,integer)
 *	always returns the correct integer provided it is
 *	representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

/*#include "math.h"*/
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

#ifdef __STDC__
	double __ieee754_pow(double x, double y)
#else
	double __ieee754_pow(x,y)
	double x, y;
#endif
{
	double z,ax,z_h,z_l,p_h,p_l;
	double y1,t1,t2,r,s,t,u,v,w;
	int32_t i,j,k,yisint,n;
	int32_t hx,hy,ix,iy;
	u_int32_t lx,ly;

	EXTRACT_WORDS(hx,lx,x);
	EXTRACT_WORDS(hy,ly,y);
	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

    /* y==zero: x**0 = 1 */
	if((iy|ly)==0) return one;

    /* +-NaN return x+y */
	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
		return x+y;

    /* determine if y is an odd int when x < 0
     * yisint = 0	... y is not an integer
     * yisint = 1	... y is an odd int
     * yisint = 2	... y is an even int
     */
	yisint  = 0;
	if(hx<0) {
	    if(iy>=0x43400000) yisint = 2; /* even integer y */
	    else if(iy>=0x3ff00000) {
		k = (iy>>20)-0x3ff;	   /* exponent */
		if(k>20) {
		    j = ly>>(52-k);
		    if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
		} else if(ly==0) {
		    j = iy>>(20-k);
		    if((j<<(20-k))==iy) yisint = 2-(j&1);
		}
	    }
	}

    /* special value of y */
	if(ly==0) {
	    if (iy==0x7ff00000) {	/* y is +-inf */
	        if(((ix-0x3ff00000)|lx)==0)
		    return  y - y;	/* inf**+-1 is NaN */
	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
		    return (hy>=0)? y: zero;
	        else			/* (|x|<1)**-,+inf = inf,0 */
		    return (hy<0)?-y: zero;
	    }
	    if(iy==0x3ff00000) {	/* y is  +-1 */
		if(hy<0) return one/x; else return x;
	    }
	    if(hy==0x40000000) return x*x; /* y is  2 */
	    if(hy==0x3fe00000) {	/* y is  0.5 */
		if(hx>=0)	/* x >= +0 */
		return __ieee754_sqrt(x);
	    }
	}

	ax   = x < 0 ? -x : x; /*fabs(x);*/
    /* special value of x */
	if(lx==0) {
	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
		z = ax;			/*x is +-0,+-inf,+-1*/
		if(hy<0) z = one/z;	/* z = (1/|x|) */
		if(hx<0) {
		    if(((ix-0x3ff00000)|yisint)==0) {
			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
		    } else if(yisint==1)
			z = -z;		/* (x<0)**odd = -(|x|**odd) */
		}
		return z;
	    }
	}

    /* (x<0)**(non-int) is NaN */
	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);

    /* |y| is huge */
	if(iy>0x41e00000) { /* if |y| > 2**31 */
	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
	    }
	/* over/underflow if x is not close to one */
	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
	/* now |1-x| is tiny <= 2**-20, suffice to compute
	   log(x) by x-x^2/2+x^3/3-x^4/4 */
	    t = x-1;		/* t has 20 trailing zeros */
	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
	    v = t*ivln2_l-w*ivln2;
	    t1 = u+v;
	    SET_LOW_WORD(t1,0);
	    t2 = v-(t1-u);
	} else {
	    double s2,s_h,s_l,t_h,t_l;
	    n = 0;
	/* take care subnormal number */
	    if(ix<0x00100000)
		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
	    n  += ((ix)>>20)-0x3ff;
	    j  = ix&0x000fffff;
	/* determine interval */
	    ix = j|0x3ff00000;		/* normalize ix */
	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
	    else {k=0;n+=1;ix -= 0x00100000;}
	    SET_HIGH_WORD(ax,ix);

	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
	    v = one/(ax+bp[k]);
	    s = u*v;
	    s_h = s;
	    SET_LOW_WORD(s_h,0);
	/* t_h=ax+bp[k] High */
	    t_h = zero;
	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
	    t_l = ax - (t_h-bp[k]);
	    s_l = v*((u-s_h*t_h)-s_h*t_l);
	/* compute log(ax) */
	    s2 = s*s;
	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
	    r += s_l*(s_h+s);
	    s2  = s_h*s_h;
	    t_h = 3.0+s2+r;
	    SET_LOW_WORD(t_h,0);
	    t_l = r-((t_h-3.0)-s2);
	/* u+v = s*(1+...) */
	    u = s_h*t_h;
	    v = s_l*t_h+t_l*s;
	/* 2/(3log2)*(s+...) */
	    p_h = u+v;
	    SET_LOW_WORD(p_h,0);
	    p_l = v-(p_h-u);
	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
	    t = (double)n;
	    t1 = (((z_h+z_l)+dp_h[k])+t);
	    SET_LOW_WORD(t1,0);
	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
	}

	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
	    s = -one;/* (-ve)**(odd int) */

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
	y1  = y;
	SET_LOW_WORD(y1,0);
	p_l = (y-y1)*t1+y*t2;
	p_h = y1*t1;
	z = p_l+p_h;
	EXTRACT_WORDS(j,i,z);
	if (j>=0x40900000) {				/* z >= 1024 */
	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
		return s*huge*huge;			/* overflow */
	    else {
		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
	    }
	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
		return s*tiny*tiny;		/* underflow */
	    else {
		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
	    }
	}
    /*
     * compute 2**(p_h+p_l)
     */
	i = j&0x7fffffff;
	k = (i>>20)-0x3ff;
	n = 0;
	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
	    n = j+(0x00100000>>(k+1));
	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
	    t = zero;
	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
	    if(j<0) n = -n;
	    p_h -= t;
	}
	t = p_l+p_h;
	SET_LOW_WORD(t,0);
	u = t*lg2_h;
	v = (p_l-(t-p_h))*lg2+t*lg2_l;
	z = u+v;
	w = v-(z-u);
	t  = z*z;
	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
	r  = (z*t1)/(t1-two)-(w+z*w);
	z  = one-(r-z);
	GET_HIGH_WORD(j,z);
	j += (n<<20);
	if((j>>20)<=0) z = scalbn(z,n);	/* subnormal output */
	else SET_HIGH_WORD(z,j);
	return s*z;
}