Mercurial > sdl-ios-xcode
view src/audio/SDL_wave.c @ 142:40676b1aa39d
From: Max Horn <max@quendi.de>
I also have a slight enhancment, which I already submitted to Darrell Walisser:
In the SDL target template file "Application.trgttmpl" (contained in
the PBProject.tar.gz archive), replace
CustomProductSettings = {
};
with
CustomProductSettings = {
NSPrincipalClass = "NSApplication";
NSMainNibFile = "SDLMain.nib";
};
This automates two steps mentioned in the Readme when creating a new
"SDL Target" in Apple's ProjectBuilder.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Thu, 09 Aug 2001 06:08:57 +0000 |
parents | 74212992fb08 |
children | 02e27b705645 |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997, 1998, 1999, 2000, 2001 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Sam Lantinga slouken@devolution.com */ #ifdef SAVE_RCSID static char rcsid = "@(#) $Id$"; #endif #ifndef DISABLE_FILE /* Microsoft WAVE file loading routines */ #include <stdlib.h> #include <string.h> #include "SDL_error.h" #include "SDL_audio.h" #include "SDL_wave.h" #include "SDL_endian.h" #ifndef NELEMS #define NELEMS(array) ((sizeof array)/(sizeof array[0])) #endif static int ReadChunk(SDL_RWops *src, Chunk *chunk); struct MS_ADPCM_decodestate { Uint8 hPredictor; Uint16 iDelta; Sint16 iSamp1; Sint16 iSamp2; }; static struct MS_ADPCM_decoder { WaveFMT wavefmt; Uint16 wSamplesPerBlock; Uint16 wNumCoef; Sint16 aCoeff[7][2]; /* * * */ struct MS_ADPCM_decodestate state[2]; } MS_ADPCM_state; static int InitMS_ADPCM(WaveFMT *format) { Uint8 *rogue_feel; Uint16 extra_info; int i; /* Set the rogue pointer to the MS_ADPCM specific data */ MS_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding); MS_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels); MS_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency); MS_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate); MS_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign); MS_ADPCM_state.wavefmt.bitspersample = SDL_SwapLE16(format->bitspersample); rogue_feel = (Uint8 *)format+sizeof(*format); if ( sizeof(*format) == 16 ) { extra_info = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); } MS_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); MS_ADPCM_state.wNumCoef = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); if ( MS_ADPCM_state.wNumCoef != 7 ) { SDL_SetError("Unknown set of MS_ADPCM coefficients"); return(-1); } for ( i=0; i<MS_ADPCM_state.wNumCoef; ++i ) { MS_ADPCM_state.aCoeff[i][0] = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); MS_ADPCM_state.aCoeff[i][1] = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); } return(0); } static Sint32 MS_ADPCM_nibble(struct MS_ADPCM_decodestate *state, Uint8 nybble, Sint16 *coeff) { const Sint32 max_audioval = ((1<<(16-1))-1); const Sint32 min_audioval = -(1<<(16-1)); const Sint32 adaptive[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; Sint32 new_sample, delta; new_sample = ((state->iSamp1 * coeff[0]) + (state->iSamp2 * coeff[1]))/256; if ( nybble & 0x08 ) { new_sample += state->iDelta * (nybble-0x10); } else { new_sample += state->iDelta * nybble; } if ( new_sample < min_audioval ) { new_sample = min_audioval; } else if ( new_sample > max_audioval ) { new_sample = max_audioval; } delta = ((Sint32)state->iDelta * adaptive[nybble])/256; if ( delta < 16 ) { delta = 16; } state->iDelta = delta; state->iSamp2 = state->iSamp1; state->iSamp1 = new_sample; return(new_sample); } static int MS_ADPCM_decode(Uint8 **audio_buf, Uint32 *audio_len) { struct MS_ADPCM_decodestate *state[2]; Uint8 *freeable, *encoded, *decoded; Sint32 encoded_len, samplesleft; Sint8 nybble, stereo; Sint16 *coeff[2]; Sint32 new_sample; /* Allocate the proper sized output buffer */ encoded_len = *audio_len; encoded = *audio_buf; freeable = *audio_buf; *audio_len = (encoded_len/MS_ADPCM_state.wavefmt.blockalign) * MS_ADPCM_state.wSamplesPerBlock* MS_ADPCM_state.wavefmt.channels*sizeof(Sint16); *audio_buf = (Uint8 *)malloc(*audio_len); if ( *audio_buf == NULL ) { SDL_Error(SDL_ENOMEM); return(-1); } decoded = *audio_buf; /* Get ready... Go! */ stereo = (MS_ADPCM_state.wavefmt.channels == 2); state[0] = &MS_ADPCM_state.state[0]; state[1] = &MS_ADPCM_state.state[stereo]; while ( encoded_len >= MS_ADPCM_state.wavefmt.blockalign ) { /* Grab the initial information for this block */ state[0]->hPredictor = *encoded++; if ( stereo ) { state[1]->hPredictor = *encoded++; } state[0]->iDelta = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); if ( stereo ) { state[1]->iDelta = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); } state[0]->iSamp1 = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); if ( stereo ) { state[1]->iSamp1 = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); } state[0]->iSamp2 = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); if ( stereo ) { state[1]->iSamp2 = ((encoded[1]<<8)|encoded[0]); encoded += sizeof(Sint16); } coeff[0] = MS_ADPCM_state.aCoeff[state[0]->hPredictor]; coeff[1] = MS_ADPCM_state.aCoeff[state[1]->hPredictor]; /* Store the two initial samples we start with */ decoded[0] = state[0]->iSamp2&0xFF; decoded[1] = state[0]->iSamp2>>8; decoded += 2; if ( stereo ) { decoded[0] = state[1]->iSamp2&0xFF; decoded[1] = state[1]->iSamp2>>8; decoded += 2; } decoded[0] = state[0]->iSamp1&0xFF; decoded[1] = state[0]->iSamp1>>8; decoded += 2; if ( stereo ) { decoded[0] = state[1]->iSamp1&0xFF; decoded[1] = state[1]->iSamp1>>8; decoded += 2; } /* Decode and store the other samples in this block */ samplesleft = (MS_ADPCM_state.wSamplesPerBlock-2)* MS_ADPCM_state.wavefmt.channels; while ( samplesleft > 0 ) { nybble = (*encoded)>>4; new_sample = MS_ADPCM_nibble(state[0],nybble,coeff[0]); decoded[0] = new_sample&0xFF; new_sample >>= 8; decoded[1] = new_sample&0xFF; decoded += 2; nybble = (*encoded)&0x0F; new_sample = MS_ADPCM_nibble(state[1],nybble,coeff[1]); decoded[0] = new_sample&0xFF; new_sample >>= 8; decoded[1] = new_sample&0xFF; decoded += 2; ++encoded; samplesleft -= 2; } encoded_len -= MS_ADPCM_state.wavefmt.blockalign; } free(freeable); return(0); } struct IMA_ADPCM_decodestate { Sint32 sample; Sint8 index; }; static struct IMA_ADPCM_decoder { WaveFMT wavefmt; Uint16 wSamplesPerBlock; /* * * */ struct IMA_ADPCM_decodestate state[2]; } IMA_ADPCM_state; static int InitIMA_ADPCM(WaveFMT *format) { Uint8 *rogue_feel; Uint16 extra_info; /* Set the rogue pointer to the IMA_ADPCM specific data */ IMA_ADPCM_state.wavefmt.encoding = SDL_SwapLE16(format->encoding); IMA_ADPCM_state.wavefmt.channels = SDL_SwapLE16(format->channels); IMA_ADPCM_state.wavefmt.frequency = SDL_SwapLE32(format->frequency); IMA_ADPCM_state.wavefmt.byterate = SDL_SwapLE32(format->byterate); IMA_ADPCM_state.wavefmt.blockalign = SDL_SwapLE16(format->blockalign); IMA_ADPCM_state.wavefmt.bitspersample = SDL_SwapLE16(format->bitspersample); rogue_feel = (Uint8 *)format+sizeof(*format); if ( sizeof(*format) == 16 ) { extra_info = ((rogue_feel[1]<<8)|rogue_feel[0]); rogue_feel += sizeof(Uint16); } IMA_ADPCM_state.wSamplesPerBlock = ((rogue_feel[1]<<8)|rogue_feel[0]); return(0); } static Sint32 IMA_ADPCM_nibble(struct IMA_ADPCM_decodestate *state,Uint8 nybble) { const Sint32 max_audioval = ((1<<(16-1))-1); const Sint32 min_audioval = -(1<<(16-1)); const int index_table[16] = { -1, -1, -1, -1, 2, 4, 6, 8, -1, -1, -1, -1, 2, 4, 6, 8 }; const Sint32 step_table[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899, 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767 }; Sint32 delta, step; /* Compute difference and new sample value */ step = step_table[state->index]; delta = step >> 3; if ( nybble & 0x04 ) delta += step; if ( nybble & 0x02 ) delta += (step >> 1); if ( nybble & 0x01 ) delta += (step >> 2); if ( nybble & 0x08 ) delta = -delta; state->sample += delta; /* Update index value */ state->index += index_table[nybble]; if ( state->index > 88 ) { state->index = 88; } else if ( state->index < 0 ) { state->index = 0; } /* Clamp output sample */ if ( state->sample > max_audioval ) { state->sample = max_audioval; } else if ( state->sample < min_audioval ) { state->sample = min_audioval; } return(state->sample); } /* Fill the decode buffer with a channel block of data (8 samples) */ static void Fill_IMA_ADPCM_block(Uint8 *decoded, Uint8 *encoded, int channel, int numchannels, struct IMA_ADPCM_decodestate *state) { int i; Sint8 nybble; Sint32 new_sample; decoded += (channel * 2); for ( i=0; i<4; ++i ) { nybble = (*encoded)&0x0F; new_sample = IMA_ADPCM_nibble(state, nybble); decoded[0] = new_sample&0xFF; new_sample >>= 8; decoded[1] = new_sample&0xFF; decoded += 2 * numchannels; nybble = (*encoded)>>4; new_sample = IMA_ADPCM_nibble(state, nybble); decoded[0] = new_sample&0xFF; new_sample >>= 8; decoded[1] = new_sample&0xFF; decoded += 2 * numchannels; ++encoded; } } static int IMA_ADPCM_decode(Uint8 **audio_buf, Uint32 *audio_len) { struct IMA_ADPCM_decodestate *state; Uint8 *freeable, *encoded, *decoded; Sint32 encoded_len, samplesleft; int c, channels; /* Check to make sure we have enough variables in the state array */ channels = IMA_ADPCM_state.wavefmt.channels; if ( channels > NELEMS(IMA_ADPCM_state.state) ) { SDL_SetError("IMA ADPCM decoder can only handle %d channels", NELEMS(IMA_ADPCM_state.state)); return(-1); } state = IMA_ADPCM_state.state; /* Allocate the proper sized output buffer */ encoded_len = *audio_len; encoded = *audio_buf; freeable = *audio_buf; *audio_len = (encoded_len/IMA_ADPCM_state.wavefmt.blockalign) * IMA_ADPCM_state.wSamplesPerBlock* IMA_ADPCM_state.wavefmt.channels*sizeof(Sint16); *audio_buf = (Uint8 *)malloc(*audio_len); if ( *audio_buf == NULL ) { SDL_Error(SDL_ENOMEM); return(-1); } decoded = *audio_buf; /* Get ready... Go! */ while ( encoded_len >= IMA_ADPCM_state.wavefmt.blockalign ) { /* Grab the initial information for this block */ for ( c=0; c<channels; ++c ) { /* Fill the state information for this block */ state[c].sample = ((encoded[1]<<8)|encoded[0]); encoded += 2; if ( state[c].sample & 0x8000 ) { state[c].sample -= 0x10000; } state[c].index = *encoded++; /* Reserved byte in buffer header, should be 0 */ if ( *encoded++ != 0 ) { /* Uh oh, corrupt data? Buggy code? */; } /* Store the initial sample we start with */ decoded[0] = state[c].sample&0xFF; decoded[1] = state[c].sample>>8; decoded += 2; } /* Decode and store the other samples in this block */ samplesleft = (IMA_ADPCM_state.wSamplesPerBlock-1)*channels; while ( samplesleft > 0 ) { for ( c=0; c<channels; ++c ) { Fill_IMA_ADPCM_block(decoded, encoded, c, channels, &state[c]); encoded += 4; samplesleft -= 8; } decoded += (channels * 8 * 2); } encoded_len -= IMA_ADPCM_state.wavefmt.blockalign; } free(freeable); return(0); } SDL_AudioSpec * SDL_LoadWAV_RW (SDL_RWops *src, int freesrc, SDL_AudioSpec *spec, Uint8 **audio_buf, Uint32 *audio_len) { int was_error; Chunk chunk; int lenread; int MS_ADPCM_encoded, IMA_ADPCM_encoded; int samplesize; /* WAV magic header */ Uint32 RIFFchunk; Uint32 wavelen; Uint32 WAVEmagic; /* FMT chunk */ WaveFMT *format = NULL; /* Make sure we are passed a valid data source */ was_error = 0; if ( src == NULL ) { was_error = 1; goto done; } /* Check the magic header */ RIFFchunk = SDL_ReadLE32(src); wavelen = SDL_ReadLE32(src); WAVEmagic = SDL_ReadLE32(src); if ( (RIFFchunk != RIFF) || (WAVEmagic != WAVE) ) { SDL_SetError("Unrecognized file type (not WAVE)"); was_error = 1; goto done; } /* Read the audio data format chunk */ chunk.data = NULL; do { if ( chunk.data != NULL ) { free(chunk.data); } lenread = ReadChunk(src, &chunk); if ( lenread < 0 ) { was_error = 1; goto done; } } while ( (chunk.magic == FACT) || (chunk.magic == LIST) ); /* Decode the audio data format */ format = (WaveFMT *)chunk.data; if ( chunk.magic != FMT ) { SDL_SetError("Complex WAVE files not supported"); was_error = 1; goto done; } MS_ADPCM_encoded = IMA_ADPCM_encoded = 0; switch (SDL_SwapLE16(format->encoding)) { case PCM_CODE: /* We can understand this */ break; case MS_ADPCM_CODE: /* Try to understand this */ if ( InitMS_ADPCM(format) < 0 ) { was_error = 1; goto done; } MS_ADPCM_encoded = 1; break; case IMA_ADPCM_CODE: /* Try to understand this */ if ( InitIMA_ADPCM(format) < 0 ) { was_error = 1; goto done; } IMA_ADPCM_encoded = 1; break; default: SDL_SetError("Unknown WAVE data format: 0x%.4x", SDL_SwapLE16(format->encoding)); was_error = 1; goto done; } memset(spec, 0, (sizeof *spec)); spec->freq = SDL_SwapLE32(format->frequency); switch (SDL_SwapLE16(format->bitspersample)) { case 4: if ( MS_ADPCM_encoded || IMA_ADPCM_encoded ) { spec->format = AUDIO_S16; } else { was_error = 1; } break; case 8: spec->format = AUDIO_U8; break; case 16: spec->format = AUDIO_S16; break; default: was_error = 1; break; } if ( was_error ) { SDL_SetError("Unknown %d-bit PCM data format", SDL_SwapLE16(format->bitspersample)); goto done; } spec->channels = (Uint8)SDL_SwapLE16(format->channels); spec->samples = 4096; /* Good default buffer size */ /* Read the audio data chunk */ *audio_buf = NULL; do { if ( *audio_buf != NULL ) { free(*audio_buf); } lenread = ReadChunk(src, &chunk); if ( lenread < 0 ) { was_error = 1; goto done; } *audio_len = lenread; *audio_buf = chunk.data; } while ( chunk.magic != DATA ); if ( MS_ADPCM_encoded ) { if ( MS_ADPCM_decode(audio_buf, audio_len) < 0 ) { was_error = 1; goto done; } } if ( IMA_ADPCM_encoded ) { if ( IMA_ADPCM_decode(audio_buf, audio_len) < 0 ) { was_error = 1; goto done; } } /* Don't return a buffer that isn't a multiple of samplesize */ samplesize = ((spec->format & 0xFF)/8)*spec->channels; *audio_len &= ~(samplesize-1); done: if ( format != NULL ) { free(format); } if ( freesrc && src ) { SDL_RWclose(src); } if ( was_error ) { spec = NULL; } return(spec); } /* Since the WAV memory is allocated in the shared library, it must also be freed here. (Necessary under Win32, VC++) */ void SDL_FreeWAV(Uint8 *audio_buf) { if ( audio_buf != NULL ) { free(audio_buf); } } static int ReadChunk(SDL_RWops *src, Chunk *chunk) { chunk->magic = SDL_ReadLE32(src); chunk->length = SDL_ReadLE32(src); chunk->data = (Uint8 *)malloc(chunk->length); if ( chunk->data == NULL ) { SDL_Error(SDL_ENOMEM); return(-1); } if ( SDL_RWread(src, chunk->data, chunk->length, 1) != 1 ) { SDL_Error(SDL_EFREAD); free(chunk->data); return(-1); } return(chunk->length); } #endif /* ENABLE_FILE */