Mercurial > sdl-ios-xcode
view src/video/e_log.h @ 2042:3908e1f808e1
Fixed bug #292
I might be on crack here.
It looks like SDL_ConvertMono() in src/audio/SDL_audiocvt.c adds the left and
right channels of a stereo stream together, and clamps the new mono channel if
it would overflow.
Shouldn't it be dividing by 2 to average the two sample points instead of
clamping? Otherwise the mono sample point's volume doubles in the conversion.
This would also make the conversion faster, as it replaces two branches per
sample frame with a bitwise shift.
--ryan.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sun, 24 Sep 2006 15:56:36 +0000 |
parents | c121d94672cb |
children |
line wrap: on
line source
/* @(#)e_log.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: e_log.c,v 1.8 1995/05/10 20:45:49 jtc Exp $"; #endif /* __ieee754_log(x) * Return the logrithm of x * * Method : * 1. Argument Reduction: find k and f such that * x = 2^k * (1+f), * where sqrt(2)/2 < 1+f < sqrt(2) . * * 2. Approximation of log(1+f). * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) * = 2s + 2/3 s**3 + 2/5 s**5 + ....., * = 2s + s*R * We use a special Reme algorithm on [0,0.1716] to generate * a polynomial of degree 14 to approximate R The maximum error * of this polynomial approximation is bounded by 2**-58.45. In * other words, * 2 4 6 8 10 12 14 * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s * (the values of Lg1 to Lg7 are listed in the program) * and * | 2 14 | -58.45 * | Lg1*s +...+Lg7*s - R(z) | <= 2 * | | * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. * In order to guarantee error in log below 1ulp, we compute log * by * log(1+f) = f - s*(f - R) (if f is not too large) * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) * * 3. Finally, log(x) = k*ln2 + log(1+f). * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) * Here ln2 is split into two floating point number: * ln2_hi + ln2_lo, * where n*ln2_hi is always exact for |n| < 2000. * * Special cases: * log(x) is NaN with signal if x < 0 (including -INF) ; * log(+INF) is +INF; log(0) is -INF with signal; * log(NaN) is that NaN with no signal. * * Accuracy: * according to an error analysis, the error is always less than * 1 ulp (unit in the last place). * * Constants: * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ /*#include "math.h"*/ #include "math_private.h" #ifdef __STDC__ static const double #else static double #endif ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */ ln2_lo = 1.90821492927058770002e-10, /* 3dea39ef 35793c76 */ Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */ Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */ Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */ Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */ Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */ Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ #ifdef __STDC__ double __ieee754_log(double x) #else double __ieee754_log(x) double x; #endif { double hfsq, f, s, z, R, w, t1, t2, dk; int32_t k, hx, i, j; u_int32_t lx; EXTRACT_WORDS(hx, lx, x); k = 0; if (hx < 0x00100000) { /* x < 2**-1022 */ if (((hx & 0x7fffffff) | lx) == 0) return -two54 / zero; /* log(+-0)=-inf */ if (hx < 0) return (x - x) / zero; /* log(-#) = NaN */ k -= 54; x *= two54; /* subnormal number, scale up x */ GET_HIGH_WORD(hx, x); } if (hx >= 0x7ff00000) return x + x; k += (hx >> 20) - 1023; hx &= 0x000fffff; i = (hx + 0x95f64) & 0x100000; SET_HIGH_WORD(x, hx | (i ^ 0x3ff00000)); /* normalize x or x/2 */ k += (i >> 20); f = x - 1.0; if ((0x000fffff & (2 + hx)) < 3) { /* |f| < 2**-20 */ if (f == zero) { if (k == 0) return zero; else { dk = (double) k; return dk * ln2_hi + dk * ln2_lo; } } R = f * f * (0.5 - 0.33333333333333333 * f); if (k == 0) return f - R; else { dk = (double) k; return dk * ln2_hi - ((R - dk * ln2_lo) - f); } } s = f / (2.0 + f); dk = (double) k; z = s * s; i = hx - 0x6147a; w = z * z; j = 0x6b851 - hx; t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); i |= j; R = t2 + t1; if (i > 0) { hfsq = 0.5 * f * f; if (k == 0) return f - (hfsq - s * (hfsq + R)); else return dk * ln2_hi - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); } else { if (k == 0) return f - s * (f - R); else return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); } } /* vi: set ts=4 sw=4 expandtab: */