view src/video/e_pow.h @ 1525:23a347cfbed8

Fixed bug #38 I'm using SDL 1.2.9 with Visual C++ 7.0 on Windows 2000. Here's the setup: my game starts in a window, with SDL_WM_GrabInput(SDL_GRAB_ON) to constrain the cursor to the game window. The mouse cursor is outside of the window when the game launches, and when the window appears the cursor is grabbed and placed at the top left corner of the inside of the game window. At this point, if I click the mouse without moving it, the SDL_MOUSEBUTTONDOWN event's mouse coordinates are (65535,65535).
author Sam Lantinga <slouken@libsdl.org>
date Tue, 14 Mar 2006 06:00:30 +0000
parents 7a610f25c12f
children 782fd950bd46 c121d94672cb
line wrap: on
line source

/* @(#)e_pow.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
#endif

/* __ieee754_pow(x,y) return x**y
 *
 *		      n
 * Method:  Let x =  2   * (1+f)
 *	1. Compute and return log2(x) in two pieces:
 *		log2(x) = w1 + w2,
 *	   where w1 has 53-24 = 29 bit trailing zeros.
 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 *	   arithmetic, where |y'|<=0.5.
 *	3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *	1.  (anything) ** 0  is 1
 *	2.  (anything) ** 1  is itself
 *	3.  (anything) ** NAN is NAN
 *	4.  NAN ** (anything except 0) is NAN
 *	5.  +-(|x| > 1) **  +INF is +INF
 *	6.  +-(|x| > 1) **  -INF is +0
 *	7.  +-(|x| < 1) **  +INF is +0
 *	8.  +-(|x| < 1) **  -INF is +INF
 *	9.  +-1         ** +-INF is NAN
 *	10. +0 ** (+anything except 0, NAN)               is +0
 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *	12. +0 ** (-anything except 0, NAN)               is +INF
 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *	15. +INF ** (+anything except 0,NAN) is +INF
 *	16. +INF ** (-anything except 0,NAN) is +0
 *	17. -INF ** (anything)  = -0 ** (-anything)
 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *	pow(x,y) returns x**y nearly rounded. In particular
 *			pow(integer,integer)
 *	always returns the correct integer provided it is
 *	representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

/*#include "math.h"*/
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
bp[] = {1.0, 1.5,},
dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
	/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
L1  =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
L2  =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
L3  =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
L4  =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
L5  =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
L6  =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
P5   =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
lg2  =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
lg2_h  =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
lg2_l  = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
ovt =  8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
cp    =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
cp_h  =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
cp_l  = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
ivln2    =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
ivln2_h  =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
ivln2_l  =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/

#ifdef __STDC__
	double __ieee754_pow(double x, double y)
#else
	double __ieee754_pow(x,y)
	double x, y;
#endif
{
	double z,ax,z_h,z_l,p_h,p_l;
	double y1,t1,t2,r,s,t,u,v,w;
	int32_t i,j,k,yisint,n;
	int32_t hx,hy,ix,iy;
	u_int32_t lx,ly;

	EXTRACT_WORDS(hx,lx,x);
	EXTRACT_WORDS(hy,ly,y);
	ix = hx&0x7fffffff;  iy = hy&0x7fffffff;

    /* y==zero: x**0 = 1 */
	if((iy|ly)==0) return one;

    /* +-NaN return x+y */
	if(ix > 0x7ff00000 || ((ix==0x7ff00000)&&(lx!=0)) ||
	   iy > 0x7ff00000 || ((iy==0x7ff00000)&&(ly!=0)))
		return x+y;

    /* determine if y is an odd int when x < 0
     * yisint = 0	... y is not an integer
     * yisint = 1	... y is an odd int
     * yisint = 2	... y is an even int
     */
	yisint  = 0;
	if(hx<0) {
	    if(iy>=0x43400000) yisint = 2; /* even integer y */
	    else if(iy>=0x3ff00000) {
		k = (iy>>20)-0x3ff;	   /* exponent */
		if(k>20) {
		    j = ly>>(52-k);
		    if((u_int32_t)(j<<(52-k))==ly) yisint = 2-(j&1);
		} else if(ly==0) {
		    j = iy>>(20-k);
		    if((j<<(20-k))==iy) yisint = 2-(j&1);
		}
	    }
	}

    /* special value of y */
	if(ly==0) {
	    if (iy==0x7ff00000) {	/* y is +-inf */
	        if(((ix-0x3ff00000)|lx)==0)
		    return  y - y;	/* inf**+-1 is NaN */
	        else if (ix >= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
		    return (hy>=0)? y: zero;
	        else			/* (|x|<1)**-,+inf = inf,0 */
		    return (hy<0)?-y: zero;
	    }
	    if(iy==0x3ff00000) {	/* y is  +-1 */
		if(hy<0) return one/x; else return x;
	    }
	    if(hy==0x40000000) return x*x; /* y is  2 */
	    if(hy==0x3fe00000) {	/* y is  0.5 */
		if(hx>=0)	/* x >= +0 */
		return __ieee754_sqrt(x);
	    }
	}

	ax   = x < 0 ? -x : x; /*fabs(x);*/
    /* special value of x */
	if(lx==0) {
	    if(ix==0x7ff00000||ix==0||ix==0x3ff00000){
		z = ax;			/*x is +-0,+-inf,+-1*/
		if(hy<0) z = one/z;	/* z = (1/|x|) */
		if(hx<0) {
		    if(((ix-0x3ff00000)|yisint)==0) {
			z = (z-z)/(z-z); /* (-1)**non-int is NaN */
		    } else if(yisint==1)
			z = -z;		/* (x<0)**odd = -(|x|**odd) */
		}
		return z;
	    }
	}

    /* (x<0)**(non-int) is NaN */
	if(((((u_int32_t)hx>>31)-1)|yisint)==0) return (x-x)/(x-x);

    /* |y| is huge */
	if(iy>0x41e00000) { /* if |y| > 2**31 */
	    if(iy>0x43f00000){	/* if |y| > 2**64, must o/uflow */
		if(ix<=0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
		if(ix>=0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
	    }
	/* over/underflow if x is not close to one */
	    if(ix<0x3fefffff) return (hy<0)? huge*huge:tiny*tiny;
	    if(ix>0x3ff00000) return (hy>0)? huge*huge:tiny*tiny;
	/* now |1-x| is tiny <= 2**-20, suffice to compute
	   log(x) by x-x^2/2+x^3/3-x^4/4 */
	    t = x-1;		/* t has 20 trailing zeros */
	    w = (t*t)*(0.5-t*(0.3333333333333333333333-t*0.25));
	    u = ivln2_h*t;	/* ivln2_h has 21 sig. bits */
	    v = t*ivln2_l-w*ivln2;
	    t1 = u+v;
	    SET_LOW_WORD(t1,0);
	    t2 = v-(t1-u);
	} else {
	    double s2,s_h,s_l,t_h,t_l;
	    n = 0;
	/* take care subnormal number */
	    if(ix<0x00100000)
		{ax *= two53; n -= 53; GET_HIGH_WORD(ix,ax); }
	    n  += ((ix)>>20)-0x3ff;
	    j  = ix&0x000fffff;
	/* determine interval */
	    ix = j|0x3ff00000;		/* normalize ix */
	    if(j<=0x3988E) k=0;		/* |x|<sqrt(3/2) */
	    else if(j<0xBB67A) k=1;	/* |x|<sqrt(3)   */
	    else {k=0;n+=1;ix -= 0x00100000;}
	    SET_HIGH_WORD(ax,ix);

	/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
	    u = ax-bp[k];		/* bp[0]=1.0, bp[1]=1.5 */
	    v = one/(ax+bp[k]);
	    s = u*v;
	    s_h = s;
	    SET_LOW_WORD(s_h,0);
	/* t_h=ax+bp[k] High */
	    t_h = zero;
	    SET_HIGH_WORD(t_h,((ix>>1)|0x20000000)+0x00080000+(k<<18));
	    t_l = ax - (t_h-bp[k]);
	    s_l = v*((u-s_h*t_h)-s_h*t_l);
	/* compute log(ax) */
	    s2 = s*s;
	    r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
	    r += s_l*(s_h+s);
	    s2  = s_h*s_h;
	    t_h = 3.0+s2+r;
	    SET_LOW_WORD(t_h,0);
	    t_l = r-((t_h-3.0)-s2);
	/* u+v = s*(1+...) */
	    u = s_h*t_h;
	    v = s_l*t_h+t_l*s;
	/* 2/(3log2)*(s+...) */
	    p_h = u+v;
	    SET_LOW_WORD(p_h,0);
	    p_l = v-(p_h-u);
	    z_h = cp_h*p_h;		/* cp_h+cp_l = 2/(3*log2) */
	    z_l = cp_l*p_h+p_l*cp+dp_l[k];
	/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
	    t = (double)n;
	    t1 = (((z_h+z_l)+dp_h[k])+t);
	    SET_LOW_WORD(t1,0);
	    t2 = z_l-(((t1-t)-dp_h[k])-z_h);
	}

	s = one; /* s (sign of result -ve**odd) = -1 else = 1 */
	if(((((u_int32_t)hx>>31)-1)|(yisint-1))==0)
	    s = -one;/* (-ve)**(odd int) */

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
	y1  = y;
	SET_LOW_WORD(y1,0);
	p_l = (y-y1)*t1+y*t2;
	p_h = y1*t1;
	z = p_l+p_h;
	EXTRACT_WORDS(j,i,z);
	if (j>=0x40900000) {				/* z >= 1024 */
	    if(((j-0x40900000)|i)!=0)			/* if z > 1024 */
		return s*huge*huge;			/* overflow */
	    else {
		if(p_l+ovt>z-p_h) return s*huge*huge;	/* overflow */
	    }
	} else if((j&0x7fffffff)>=0x4090cc00 ) {	/* z <= -1075 */
	    if(((j-0xc090cc00)|i)!=0) 		/* z < -1075 */
		return s*tiny*tiny;		/* underflow */
	    else {
		if(p_l<=z-p_h) return s*tiny*tiny;	/* underflow */
	    }
	}
    /*
     * compute 2**(p_h+p_l)
     */
	i = j&0x7fffffff;
	k = (i>>20)-0x3ff;
	n = 0;
	if(i>0x3fe00000) {		/* if |z| > 0.5, set n = [z+0.5] */
	    n = j+(0x00100000>>(k+1));
	    k = ((n&0x7fffffff)>>20)-0x3ff;	/* new k for n */
	    t = zero;
	    SET_HIGH_WORD(t,n&~(0x000fffff>>k));
	    n = ((n&0x000fffff)|0x00100000)>>(20-k);
	    if(j<0) n = -n;
	    p_h -= t;
	}
	t = p_l+p_h;
	SET_LOW_WORD(t,0);
	u = t*lg2_h;
	v = (p_l-(t-p_h))*lg2+t*lg2_l;
	z = u+v;
	w = v-(z-u);
	t  = z*z;
	t1  = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
	r  = (z*t1)/(t1-two)-(w+z*w);
	z  = one-(r-z);
	GET_HIGH_WORD(j,z);
	j += (n<<20);
	if((j>>20)<=0) z = SDL_NAME(scalbn)(z,n);	/* subnormal output */
	else SET_HIGH_WORD(z,j);
	return s*z;
}