view src/video/e_pow.h @ 2185:2032348afed1

This code adds support for DirectColor visuals to SDL 1.3. The support uses part of the Xmu library. To ensure that the library is available and to keep people form having to install yet another library I have added the essential parts of Xmu in src/video/extensions/XmuStdCmap and an include file in src/video/extensions. The support makes use of standard X11 mechanisms to create color maps and make sure that an application uses the same color map for each window/visual combination. This should make it possible for gamma support to be implemented based on a single color map per application. Hurm... it looks like "make indent" modified a few extra files. Those are getting committed too.
author Bob Pendleton <bob@pendleton.com>
date Thu, 12 Jul 2007 20:00:50 +0000
parents c121d94672cb
children edd2839b36f7
line wrap: on
line source

/* @(#)e_pow.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $";
#endif

/* __ieee754_pow(x,y) return x**y
 *
 *		      n
 * Method:  Let x =  2   * (1+f)
 *	1. Compute and return log2(x) in two pieces:
 *		log2(x) = w1 + w2,
 *	   where w1 has 53-24 = 29 bit trailing zeros.
 *	2. Perform y*log2(x) = n+y' by simulating muti-precision
 *	   arithmetic, where |y'|<=0.5.
 *	3. Return x**y = 2**n*exp(y'*log2)
 *
 * Special cases:
 *	1.  (anything) ** 0  is 1
 *	2.  (anything) ** 1  is itself
 *	3.  (anything) ** NAN is NAN
 *	4.  NAN ** (anything except 0) is NAN
 *	5.  +-(|x| > 1) **  +INF is +INF
 *	6.  +-(|x| > 1) **  -INF is +0
 *	7.  +-(|x| < 1) **  +INF is +0
 *	8.  +-(|x| < 1) **  -INF is +INF
 *	9.  +-1         ** +-INF is NAN
 *	10. +0 ** (+anything except 0, NAN)               is +0
 *	11. -0 ** (+anything except 0, NAN, odd integer)  is +0
 *	12. +0 ** (-anything except 0, NAN)               is +INF
 *	13. -0 ** (-anything except 0, NAN, odd integer)  is +INF
 *	14. -0 ** (odd integer) = -( +0 ** (odd integer) )
 *	15. +INF ** (+anything except 0,NAN) is +INF
 *	16. +INF ** (-anything except 0,NAN) is +0
 *	17. -INF ** (anything)  = -0 ** (-anything)
 *	18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
 *	19. (-anything except 0 and inf) ** (non-integer) is NAN
 *
 * Accuracy:
 *	pow(x,y) returns x**y nearly rounded. In particular
 *			pow(integer,integer)
 *	always returns the correct integer provided it is
 *	representable.
 *
 * Constants :
 * The hexadecimal values are the intended ones for the following
 * constants. The decimal values may be used, provided that the
 * compiler will convert from decimal to binary accurately enough
 * to produce the hexadecimal values shown.
 */

/*#include "math.h"*/
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
  bp[] = { 1.0, 1.5, }, dp_h[] = {
0.0, 5.84962487220764160156e-01,},      /* 0x3FE2B803, 0x40000000 */

    dp_l[] = {
0.0, 1.35003920212974897128e-08,},      /* 0x3E4CFDEB, 0x43CFD006 */

    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
    L1 = 5.99999999999994648725e-01,    /* 0x3FE33333, 0x33333303 */
    L2 = 4.28571428578550184252e-01,    /* 0x3FDB6DB6, 0xDB6FABFF */
    L3 = 3.33333329818377432918e-01,    /* 0x3FD55555, 0x518F264D */
    L4 = 2.72728123808534006489e-01,    /* 0x3FD17460, 0xA91D4101 */
    L5 = 2.30660745775561754067e-01,    /* 0x3FCD864A, 0x93C9DB65 */
    L6 = 2.06975017800338417784e-01,    /* 0x3FCA7E28, 0x4A454EEF */
    P1 = 1.66666666666666019037e-01,    /* 0x3FC55555, 0x5555553E */
    P2 = -2.77777777770155933842e-03,   /* 0xBF66C16C, 0x16BEBD93 */
    P3 = 6.61375632143793436117e-05,    /* 0x3F11566A, 0xAF25DE2C */
    P4 = -1.65339022054652515390e-06,   /* 0xBEBBBD41, 0xC5D26BF1 */
    P5 = 4.13813679705723846039e-08,    /* 0x3E663769, 0x72BEA4D0 */
    lg2 = 6.93147180559945286227e-01,   /* 0x3FE62E42, 0xFEFA39EF */
    lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
    lg2_l = -1.90465429995776804525e-09,        /* 0xBE205C61, 0x0CA86C39 */
    ovt = 8.0085662595372944372e-0017,  /* -(1024-log2(ovfl+.5ulp)) */
    cp = 9.61796693925975554329e-01,    /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
    cp_h = 9.61796700954437255859e-01,  /* 0x3FEEC709, 0xE0000000 =(float)cp */
    cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */
    ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
    ivln2_h = 1.44269502162933349609e+00,       /* 0x3FF71547, 0x60000000 =24b 1/ln2 */
    ivln2_l = 1.92596299112661746887e-08;       /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */

#ifdef __STDC__
double
__ieee754_pow(double x, double y)
#else
double
__ieee754_pow(x, y)
     double x, y;
#endif
{
    double z, ax, z_h, z_l, p_h, p_l;
    double y1, t1, t2, r, s, t, u, v, w;
    int32_t i, j, k, yisint, n;
    int32_t hx, hy, ix, iy;
    u_int32_t lx, ly;

    EXTRACT_WORDS(hx, lx, x);
    EXTRACT_WORDS(hy, ly, y);
    ix = hx & 0x7fffffff;
    iy = hy & 0x7fffffff;

    /* y==zero: x**0 = 1 */
    if ((iy | ly) == 0)
        return one;

    /* +-NaN return x+y */
    if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) ||
        iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0)))
        return x + y;

    /* determine if y is an odd int when x < 0
     * yisint = 0       ... y is not an integer
     * yisint = 1       ... y is an odd int
     * yisint = 2       ... y is an even int
     */
    yisint = 0;
    if (hx < 0) {
        if (iy >= 0x43400000)
            yisint = 2;         /* even integer y */
        else if (iy >= 0x3ff00000) {
            k = (iy >> 20) - 0x3ff;     /* exponent */
            if (k > 20) {
                j = ly >> (52 - k);
                if ((u_int32_t) (j << (52 - k)) == ly)
                    yisint = 2 - (j & 1);
            } else if (ly == 0) {
                j = iy >> (20 - k);
                if ((j << (20 - k)) == iy)
                    yisint = 2 - (j & 1);
            }
        }
    }

    /* special value of y */
    if (ly == 0) {
        if (iy == 0x7ff00000) { /* y is +-inf */
            if (((ix - 0x3ff00000) | lx) == 0)
                return y - y;   /* inf**+-1 is NaN */
            else if (ix >= 0x3ff00000)  /* (|x|>1)**+-inf = inf,0 */
                return (hy >= 0) ? y : zero;
            else                /* (|x|<1)**-,+inf = inf,0 */
                return (hy < 0) ? -y : zero;
        }
        if (iy == 0x3ff00000) { /* y is  +-1 */
            if (hy < 0)
                return one / x;
            else
                return x;
        }
        if (hy == 0x40000000)
            return x * x;       /* y is  2 */
        if (hy == 0x3fe00000) { /* y is  0.5 */
            if (hx >= 0)        /* x >= +0 */
                return __ieee754_sqrt(x);
        }
    }

    ax = x < 0 ? -x : x;        /*fabs(x); */
    /* special value of x */
    if (lx == 0) {
        if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) {
            z = ax;             /*x is +-0,+-inf,+-1 */
            if (hy < 0)
                z = one / z;    /* z = (1/|x|) */
            if (hx < 0) {
                if (((ix - 0x3ff00000) | yisint) == 0) {
                    z = (z - z) / (z - z);      /* (-1)**non-int is NaN */
                } else if (yisint == 1)
                    z = -z;     /* (x<0)**odd = -(|x|**odd) */
            }
            return z;
        }
    }

    /* (x<0)**(non-int) is NaN */
    if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0)
        return (x - x) / (x - x);

    /* |y| is huge */
    if (iy > 0x41e00000) {      /* if |y| > 2**31 */
        if (iy > 0x43f00000) {  /* if |y| > 2**64, must o/uflow */
            if (ix <= 0x3fefffff)
                return (hy < 0) ? huge * huge : tiny * tiny;
            if (ix >= 0x3ff00000)
                return (hy > 0) ? huge * huge : tiny * tiny;
        }
        /* over/underflow if x is not close to one */
        if (ix < 0x3fefffff)
            return (hy < 0) ? huge * huge : tiny * tiny;
        if (ix > 0x3ff00000)
            return (hy > 0) ? huge * huge : tiny * tiny;
        /* now |1-x| is tiny <= 2**-20, suffice to compute
           log(x) by x-x^2/2+x^3/3-x^4/4 */
        t = x - 1;              /* t has 20 trailing zeros */
        w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
        u = ivln2_h * t;        /* ivln2_h has 21 sig. bits */
        v = t * ivln2_l - w * ivln2;
        t1 = u + v;
        SET_LOW_WORD(t1, 0);
        t2 = v - (t1 - u);
    } else {
        double s2, s_h, s_l, t_h, t_l;
        n = 0;
        /* take care subnormal number */
        if (ix < 0x00100000) {
            ax *= two53;
            n -= 53;
            GET_HIGH_WORD(ix, ax);
        }
        n += ((ix) >> 20) - 0x3ff;
        j = ix & 0x000fffff;
        /* determine interval */
        ix = j | 0x3ff00000;    /* normalize ix */
        if (j <= 0x3988E)
            k = 0;              /* |x|<sqrt(3/2) */
        else if (j < 0xBB67A)
            k = 1;              /* |x|<sqrt(3)   */
        else {
            k = 0;
            n += 1;
            ix -= 0x00100000;
        }
        SET_HIGH_WORD(ax, ix);

        /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
        u = ax - bp[k];         /* bp[0]=1.0, bp[1]=1.5 */
        v = one / (ax + bp[k]);
        s = u * v;
        s_h = s;
        SET_LOW_WORD(s_h, 0);
        /* t_h=ax+bp[k] High */
        t_h = zero;
        SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
        t_l = ax - (t_h - bp[k]);
        s_l = v * ((u - s_h * t_h) - s_h * t_l);
        /* compute log(ax) */
        s2 = s * s;
        r = s2 * s2 * (L1 +
                       s2 * (L2 +
                             s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
        r += s_l * (s_h + s);
        s2 = s_h * s_h;
        t_h = 3.0 + s2 + r;
        SET_LOW_WORD(t_h, 0);
        t_l = r - ((t_h - 3.0) - s2);
        /* u+v = s*(1+...) */
        u = s_h * t_h;
        v = s_l * t_h + t_l * s;
        /* 2/(3log2)*(s+...) */
        p_h = u + v;
        SET_LOW_WORD(p_h, 0);
        p_l = v - (p_h - u);
        z_h = cp_h * p_h;       /* cp_h+cp_l = 2/(3*log2) */
        z_l = cp_l * p_h + p_l * cp + dp_l[k];
        /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
        t = (double) n;
        t1 = (((z_h + z_l) + dp_h[k]) + t);
        SET_LOW_WORD(t1, 0);
        t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
    }

    s = one;                    /* s (sign of result -ve**odd) = -1 else = 1 */
    if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0)
        s = -one;               /* (-ve)**(odd int) */

    /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
    y1 = y;
    SET_LOW_WORD(y1, 0);
    p_l = (y - y1) * t1 + y * t2;
    p_h = y1 * t1;
    z = p_l + p_h;
    EXTRACT_WORDS(j, i, z);
    if (j >= 0x40900000) {      /* z >= 1024 */
        if (((j - 0x40900000) | i) != 0)        /* if z > 1024 */
            return s * huge * huge;     /* overflow */
        else {
            if (p_l + ovt > z - p_h)
                return s * huge * huge; /* overflow */
        }
    } else if ((j & 0x7fffffff) >= 0x4090cc00) {        /* z <= -1075 */
        if (((j - 0xc090cc00) | i) != 0)        /* z < -1075 */
            return s * tiny * tiny;     /* underflow */
        else {
            if (p_l <= z - p_h)
                return s * tiny * tiny; /* underflow */
        }
    }
    /*
     * compute 2**(p_h+p_l)
     */
    i = j & 0x7fffffff;
    k = (i >> 20) - 0x3ff;
    n = 0;
    if (i > 0x3fe00000) {       /* if |z| > 0.5, set n = [z+0.5] */
        n = j + (0x00100000 >> (k + 1));
        k = ((n & 0x7fffffff) >> 20) - 0x3ff;   /* new k for n */
        t = zero;
        SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
        n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
        if (j < 0)
            n = -n;
        p_h -= t;
    }
    t = p_l + p_h;
    SET_LOW_WORD(t, 0);
    u = t * lg2_h;
    v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
    z = u + v;
    w = v - (z - u);
    t = z * z;
    t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
    r = (z * t1) / (t1 - two) - (w + z * w);
    z = one - (r - z);
    GET_HIGH_WORD(j, z);
    j += (n << 20);
    if ((j >> 20) <= 0)
        z = SDL_NAME(scalbn) (z, n);    /* subnormal output */
    else
        SET_HIGH_WORD(z, j);
    return s * z;
}

/* vi: set ts=4 sw=4 expandtab: */