view src/libm/s_cos.c @ 2896:1ef2f1e75ff7

Date: Sat, 20 Dec 2008 23:25:19 +0100 From: Couriersud Subject: 32 & 16 bit versions of blendrect and blendline attached are 32, 16 and 15 bit versions of the blendrect and blendline functionality. There was an issue with the bresenham alg. in drawline which I also fixed.
author Sam Lantinga <slouken@libsdl.org>
date Sat, 20 Dec 2008 23:19:20 +0000
parents a98604b691c8
children dc1eb82ffdaa
line wrap: on
line source

/* @(#)s_cos.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $";
#endif

/* cos(x)
 * Return cosine function of x.
 *
 * kernel function:
 *	__kernel_sin		... sine function on [-pi/4,pi/4]
 *	__kernel_cos		... cosine function on [-pi/4,pi/4]
 *	__ieee754_rem_pio2	... argument reduction routine
 *
 * Method.
 *      Let S,C and T denote the sin, cos and tan respectively on
 *	[-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
 *	in [-pi/4 , +pi/4], and let n = k mod 4.
 *	We have
 *
 *          n        sin(x)      cos(x)        tan(x)
 *     ----------------------------------------------------------
 *	    0	       S	   C		 T
 *	    1	       C	  -S		-1/T
 *	    2	      -S	  -C		 T
 *	    3	      -C	   S		-1/T
 *     ----------------------------------------------------------
 *
 * Special cases:
 *      Let trig be any of sin, cos, or tan.
 *      trig(+-INF)  is NaN, with signals;
 *      trig(NaN)    is that NaN;
 *
 * Accuracy:
 *	TRIG(x) returns trig(x) nearly rounded
 */

#include "math.h"
#include "math_private.h"

libm_hidden_proto(cos)
#ifdef __STDC__
     double cos(double x)
#else
     double cos(x)
     double x;
#endif
{
    double y[2], z = 0.0;
    int32_t n, ix;

    /* High word of x. */
    GET_HIGH_WORD(ix, x);

    /* |x| ~< pi/4 */
    ix &= 0x7fffffff;
    if (ix <= 0x3fe921fb)
        return __kernel_cos(x, z);

    /* cos(Inf or NaN) is NaN */
    else if (ix >= 0x7ff00000)
        return x - x;

    /* argument reduction needed */
    else {
        n = __ieee754_rem_pio2(x, y);
        switch (n & 3) {
        case 0:
            return __kernel_cos(y[0], y[1]);
        case 1:
            return -__kernel_sin(y[0], y[1], 1);
        case 2:
            return -__kernel_cos(y[0], y[1]);
        default:
            return __kernel_sin(y[0], y[1], 1);
        }
    }
}

libm_hidden_def(cos)