Mercurial > sdl-ios-xcode
view src/libm/s_cos.c @ 3474:1edb86163d62
Of COURSE that trick wouldn't work on all renderers. Fall back to something for now, hopefully figure out a better way to do this later.
If we have to, we can use vertical line and horizontal line textures for vertical and horizontal lines, and then create custom textures for diagonal lines and software render those. It's terrible, but at least it would be pixel perfect.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sat, 21 Nov 2009 07:22:59 +0000 |
parents | dc1eb82ffdaa |
children |
line wrap: on
line source
/* @(#)s_cos.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static const char rcsid[] = "$NetBSD: s_cos.c,v 1.7 1995/05/10 20:47:02 jtc Exp $"; #endif /* cos(x) * Return cosine function of x. * * kernel function: * __kernel_sin ... sine function on [-pi/4,pi/4] * __kernel_cos ... cosine function on [-pi/4,pi/4] * __ieee754_rem_pio2 ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ #include "math.h" #include "math_private.h" libm_hidden_proto(cos) #ifdef __STDC__ double cos(double x) #else double cos(x) double x; #endif { double y[2], z = 0.0; int32_t n, ix; /* High word of x. */ GET_HIGH_WORD(ix, x); /* |x| ~< pi/4 */ ix &= 0x7fffffff; if (ix <= 0x3fe921fb) return __kernel_cos(x, z); /* cos(Inf or NaN) is NaN */ else if (ix >= 0x7ff00000) return x - x; /* argument reduction needed */ else { n = __ieee754_rem_pio2(x, y); switch (n & 3) { case 0: return __kernel_cos(y[0], y[1]); case 1: return -__kernel_sin(y[0], y[1], 1); case 2: return -__kernel_cos(y[0], y[1]); default: return __kernel_sin(y[0], y[1], 1); } } } libm_hidden_def(cos)