Mercurial > sdl-ios-xcode
view src/libm/e_pow.c @ 4426:1bceff8f008f
Fixed bug #943
Ozkan Sezer 2010-02-06 12:31:06 PST
Hi:
Here are some small fixes for compiling SDL against mingw-w64.
(see http://mingw-w64.sourceforge.net/ . Despite the name, it
supports both win32 and win64.)
src/audio/windx5/directx.h and src/video/windx5/directx.h (both
SDL-1.2 and SDL-1.3.) I get compilation errors about some union
not having a member named u1 and alike, because of other system
headers being included before this one and them already defining
DUMMYUNIONNAME and stuff. This header probably assumes that those
stuff are defined in windef.h, but mingw-w64 headers define them
in _mingw.h. Easily fixed by moving NONAMELESSUNION definition to
the top of the file.
src/thread/win32/SDL_systhread.c (both SDL-1.2 and SDL-1.3.) :
The __GNUC__ case for pfnSDL_CurrentBeginThread is 32-bit centric
because _beginthreadex returns uintptr_t, not unsigned long which
is 32 bits in win64. Changing the return type to uintptr_t fixes
it.
video/SDL_blit.h (and configure.in) (SDL-1.3-only) : MinGW-w64
uses msvcrt version of _aligned_malloc and _aligned_free and
they are defined in intrin.h (similar to VC). Adding proper
ifdefs fixes it. (Notes about macros to check: __MINGW32__ is
defined for both mingw.org and for mingw-w64 for both win32 and
win64, __MINGW64__ is only defined for _WIN64, so __MINGW64__
can't be used to detect mingw-w64: including _mingw.h and then
checking for __MINGW64_VERSION_MAJOR does the trick.)
SDL_win32video.h (SDL-1.3-only) : Tweaked the VINWER definition
and location in order to avoid multiple redefinition warnings.
Hope these are useful. Thanks.
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Wed, 10 Mar 2010 15:02:58 +0000 |
parents | 9ac6f0782dd6 |
children |
line wrap: on
line source
/* @(#)e_pow.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ #if defined(LIBM_SCCS) && !defined(lint) static char rcsid[] = "$NetBSD: e_pow.c,v 1.9 1995/05/12 04:57:32 jtc Exp $"; #endif /* __ieee754_pow(x,y) return x**y * * n * Method: Let x = 2 * (1+f) * 1. Compute and return log2(x) in two pieces: * log2(x) = w1 + w2, * where w1 has 53-24 = 29 bit trailing zeros. * 2. Perform y*log2(x) = n+y' by simulating muti-precision * arithmetic, where |y'|<=0.5. * 3. Return x**y = 2**n*exp(y'*log2) * * Special cases: * 1. (anything) ** 0 is 1 * 2. (anything) ** 1 is itself * 3. (anything) ** NAN is NAN * 4. NAN ** (anything except 0) is NAN * 5. +-(|x| > 1) ** +INF is +INF * 6. +-(|x| > 1) ** -INF is +0 * 7. +-(|x| < 1) ** +INF is +0 * 8. +-(|x| < 1) ** -INF is +INF * 9. +-1 ** +-INF is NAN * 10. +0 ** (+anything except 0, NAN) is +0 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0 * 12. +0 ** (-anything except 0, NAN) is +INF * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF * 14. -0 ** (odd integer) = -( +0 ** (odd integer) ) * 15. +INF ** (+anything except 0,NAN) is +INF * 16. +INF ** (-anything except 0,NAN) is +0 * 17. -INF ** (anything) = -0 ** (-anything) * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer) * 19. (-anything except 0 and inf) ** (non-integer) is NAN * * Accuracy: * pow(x,y) returns x**y nearly rounded. In particular * pow(integer,integer) * always returns the correct integer provided it is * representable. * * Constants : * The hexadecimal values are the intended ones for the following * constants. The decimal values may be used, provided that the * compiler will convert from decimal to binary accurately enough * to produce the hexadecimal values shown. */ #include "math.h" #include "math_private.h" libm_hidden_proto(scalbn) libm_hidden_proto(fabs) #ifdef __STDC__ static const double #else static double #endif bp[] = { 1.0, 1.5, }, dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */ dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */ zero = 0.0, one = 1.0, two = 2.0, two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */ huge_val = 1.0e300, tiny = 1.0e-300, /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */ L1 = 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */ L2 = 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */ L3 = 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */ L4 = 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */ L5 = 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */ L6 = 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */ P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */ P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */ P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */ P5 = 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */ lg2 = 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */ lg2_h = 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */ lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */ ovt = 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */ cp = 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */ cp_h = 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */ cp_l = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h */ ivln2 = 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */ ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2 */ ivln2_l = 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail */ #ifdef __STDC__ double attribute_hidden __ieee754_pow(double x, double y) #else double attribute_hidden __ieee754_pow(x, y) double x, y; #endif { double z, ax, z_h, z_l, p_h, p_l; double y1, t1, t2, r, s, t, u, v, w; int32_t i, j, k, yisint, n; int32_t hx, hy, ix, iy; u_int32_t lx, ly; EXTRACT_WORDS(hx, lx, x); EXTRACT_WORDS(hy, ly, y); ix = hx & 0x7fffffff; iy = hy & 0x7fffffff; /* y==zero: x**0 = 1 */ if ((iy | ly) == 0) return one; /* +-NaN return x+y */ if (ix > 0x7ff00000 || ((ix == 0x7ff00000) && (lx != 0)) || iy > 0x7ff00000 || ((iy == 0x7ff00000) && (ly != 0))) return x + y; /* determine if y is an odd int when x < 0 * yisint = 0 ... y is not an integer * yisint = 1 ... y is an odd int * yisint = 2 ... y is an even int */ yisint = 0; if (hx < 0) { if (iy >= 0x43400000) yisint = 2; /* even integer y */ else if (iy >= 0x3ff00000) { k = (iy >> 20) - 0x3ff; /* exponent */ if (k > 20) { j = ly >> (52 - k); if ((j << (52 - k)) == ly) yisint = 2 - (j & 1); } else if (ly == 0) { j = iy >> (20 - k); if ((j << (20 - k)) == iy) yisint = 2 - (j & 1); } } } /* special value of y */ if (ly == 0) { if (iy == 0x7ff00000) { /* y is +-inf */ if (((ix - 0x3ff00000) | lx) == 0) return y - y; /* inf**+-1 is NaN */ else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */ return (hy >= 0) ? y : zero; else /* (|x|<1)**-,+inf = inf,0 */ return (hy < 0) ? -y : zero; } if (iy == 0x3ff00000) { /* y is +-1 */ if (hy < 0) return one / x; else return x; } if (hy == 0x40000000) return x * x; /* y is 2 */ if (hy == 0x3fe00000) { /* y is 0.5 */ if (hx >= 0) /* x >= +0 */ return __ieee754_sqrt(x); } } ax = fabs(x); /* special value of x */ if (lx == 0) { if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { z = ax; /*x is +-0,+-inf,+-1 */ if (hy < 0) z = one / z; /* z = (1/|x|) */ if (hx < 0) { if (((ix - 0x3ff00000) | yisint) == 0) { z = (z - z) / (z - z); /* (-1)**non-int is NaN */ } else if (yisint == 1) z = -z; /* (x<0)**odd = -(|x|**odd) */ } return z; } } /* (x<0)**(non-int) is NaN */ if (((((u_int32_t) hx >> 31) - 1) | yisint) == 0) return (x - x) / (x - x); /* |y| is huge */ if (iy > 0x41e00000) { /* if |y| > 2**31 */ if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */ if (ix <= 0x3fefffff) return (hy < 0) ? huge_val * huge_val : tiny * tiny; if (ix >= 0x3ff00000) return (hy > 0) ? huge_val * huge_val : tiny * tiny; } /* over/underflow if x is not close to one */ if (ix < 0x3fefffff) return (hy < 0) ? huge_val * huge_val : tiny * tiny; if (ix > 0x3ff00000) return (hy > 0) ? huge_val * huge_val : tiny * tiny; /* now |1-x| is tiny <= 2**-20, suffice to compute log(x) by x-x^2/2+x^3/3-x^4/4 */ t = x - 1; /* t has 20 trailing zeros */ w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25)); u = ivln2_h * t; /* ivln2_h has 21 sig. bits */ v = t * ivln2_l - w * ivln2; t1 = u + v; SET_LOW_WORD(t1, 0); t2 = v - (t1 - u); } else { double s2, s_h, s_l, t_h, t_l; n = 0; /* take care subnormal number */ if (ix < 0x00100000) { ax *= two53; n -= 53; GET_HIGH_WORD(ix, ax); } n += ((ix) >> 20) - 0x3ff; j = ix & 0x000fffff; /* determine interval */ ix = j | 0x3ff00000; /* normalize ix */ if (j <= 0x3988E) k = 0; /* |x|<sqrt(3/2) */ else if (j < 0xBB67A) k = 1; /* |x|<sqrt(3) */ else { k = 0; n += 1; ix -= 0x00100000; } SET_HIGH_WORD(ax, ix); /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */ u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */ v = one / (ax + bp[k]); s = u * v; s_h = s; SET_LOW_WORD(s_h, 0); /* t_h=ax+bp[k] High */ t_h = zero; SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18)); t_l = ax - (t_h - bp[k]); s_l = v * ((u - s_h * t_h) - s_h * t_l); /* compute log(ax) */ s2 = s * s; r = s2 * s2 * (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6))))); r += s_l * (s_h + s); s2 = s_h * s_h; t_h = 3.0 + s2 + r; SET_LOW_WORD(t_h, 0); t_l = r - ((t_h - 3.0) - s2); /* u+v = s*(1+...) */ u = s_h * t_h; v = s_l * t_h + t_l * s; /* 2/(3log2)*(s+...) */ p_h = u + v; SET_LOW_WORD(p_h, 0); p_l = v - (p_h - u); z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */ z_l = cp_l * p_h + p_l * cp + dp_l[k]; /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */ t = (double) n; t1 = (((z_h + z_l) + dp_h[k]) + t); SET_LOW_WORD(t1, 0); t2 = z_l - (((t1 - t) - dp_h[k]) - z_h); } s = one; /* s (sign of result -ve**odd) = -1 else = 1 */ if (((((u_int32_t) hx >> 31) - 1) | (yisint - 1)) == 0) s = -one; /* (-ve)**(odd int) */ /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */ y1 = y; SET_LOW_WORD(y1, 0); p_l = (y - y1) * t1 + y * t2; p_h = y1 * t1; z = p_l + p_h; EXTRACT_WORDS(j, i, z); if (j >= 0x40900000) { /* z >= 1024 */ if (((j - 0x40900000) | i) != 0) /* if z > 1024 */ return s * huge_val * huge_val; /* overflow */ else { if (p_l + ovt > z - p_h) return s * huge_val * huge_val; /* overflow */ } } else if ((j & 0x7fffffff) >= 0x4090cc00) { /* z <= -1075 */ if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */ return s * tiny * tiny; /* underflow */ else { if (p_l <= z - p_h) return s * tiny * tiny; /* underflow */ } } /* * compute 2**(p_h+p_l) */ i = j & 0x7fffffff; k = (i >> 20) - 0x3ff; n = 0; if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */ n = j + (0x00100000 >> (k + 1)); k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */ t = zero; SET_HIGH_WORD(t, n & ~(0x000fffff >> k)); n = ((n & 0x000fffff) | 0x00100000) >> (20 - k); if (j < 0) n = -n; p_h -= t; } t = p_l + p_h; SET_LOW_WORD(t, 0); u = t * lg2_h; v = (p_l - (t - p_h)) * lg2 + t * lg2_l; z = u + v; w = v - (z - u); t = z * z; t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); r = (z * t1) / (t1 - two) - (w + z * w); z = one - (r - z); GET_HIGH_WORD(j, z); j += (n << 20); if ((j >> 20) <= 0) z = scalbn(z, n); /* subnormal output */ else SET_HIGH_WORD(z, j); return s * z; }