view src/libm/k_sin.c @ 4590:1ad70fb49fcb

Fix so many things that there is little place in this column to list them all but the result is that blending modes just work now for drawing primitives. Fixes involved: 1. Fix handling of alpha channel when SDL_BLENDMODE_NONE is set. 2. Make xrendercolor use floating-point values for color channels and then convert to 16 bit ints. 3. Fix handling of visuals in SDL_x11modes.c so that a 32 bit ARGB visual is used. 4. Fix the background pixel value in SDL_x11window.c so that the window background has an alpha value of 0xFF and not 0.
author Sunny Sachanandani <sunnysachanandani@gmail.com>
date Fri, 09 Jul 2010 21:36:41 +0530
parents dc1eb82ffdaa
children
line wrap: on
line source

/* @(#)k_sin.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static const char rcsid[] =
    "$NetBSD: k_sin.c,v 1.8 1995/05/10 20:46:31 jtc Exp $";
#endif

/* __kernel_sin( x, y, iy)
 * kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
 * Input x is assumed to be bounded by ~pi/4 in magnitude.
 * Input y is the tail of x.
 * Input iy indicates whether y is 0. (if iy=0, y assume to be 0).
 *
 * Algorithm
 *	1. Since sin(-x) = -sin(x), we need only to consider positive x.
 *	2. if x < 2^-27 (hx<0x3e400000 0), return x with inexact if x!=0.
 *	3. sin(x) is approximated by a polynomial of degree 13 on
 *	   [0,pi/4]
 *		  	         3            13
 *	   	sin(x) ~ x + S1*x + ... + S6*x
 *	   where
 *
 * 	|sin(x)         2     4     6     8     10     12  |     -58
 * 	|----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
 * 	|  x 					           |
 *
 *	4. sin(x+y) = sin(x) + sin'(x')*y
 *		    ~ sin(x) + (1-x*x/2)*y
 *	   For better accuracy, let
 *		     3      2      2      2      2
 *		r = x *(S2+x *(S3+x *(S4+x *(S5+x *S6))))
 *	   then                   3    2
 *		sin(x) = x + (S1*x + (x *(r-y/2)+y))
 */

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const double
#else
static double
#endif
  half = 5.00000000000000000000e-01,    /* 0x3FE00000, 0x00000000 */
    S1 = -1.66666666666666324348e-01,   /* 0xBFC55555, 0x55555549 */
    S2 = 8.33333333332248946124e-03,    /* 0x3F811111, 0x1110F8A6 */
    S3 = -1.98412698298579493134e-04,   /* 0xBF2A01A0, 0x19C161D5 */
    S4 = 2.75573137070700676789e-06,    /* 0x3EC71DE3, 0x57B1FE7D */
    S5 = -2.50507602534068634195e-08,   /* 0xBE5AE5E6, 0x8A2B9CEB */
    S6 = 1.58969099521155010221e-10;    /* 0x3DE5D93A, 0x5ACFD57C */

#ifdef __STDC__
double attribute_hidden
__kernel_sin(double x, double y, int iy)
#else
double attribute_hidden
__kernel_sin(x, y, iy)
     double x, y;
     int iy;                    /* iy=0 if y is zero */
#endif
{
    double z, r, v;
    int32_t ix;
    GET_HIGH_WORD(ix, x);
    ix &= 0x7fffffff;           /* high word of x */
    if (ix < 0x3e400000) {      /* |x| < 2**-27 */
        if ((int) x == 0)
            return x;
    }                           /* generate inexact */
    z = x * x;
    v = z * x;
    r = S2 + z * (S3 + z * (S4 + z * (S5 + z * S6)));
    if (iy == 0)
        return x + v * (S1 + z * r);
    else
        return x - ((z * (half * y - v * r) - y) - v * S1);
}