view src/audio/SDL_audiocvt.c @ 1287:15a89a0c52bf

Date: Tue, 15 Feb 2005 21:28:48 +0900 (JST) From: "Michael Leonhard" Subject: [SDL] resize bug on Win32 and patch This is my first post to this mailing list. In this email I will detail a bug in the behavior of resizable SDL windows on Win32. Then I will explain the solution and provide a patch. Symptoms: Under Windows, an SDL display created with the SDL_RESIZABLE flag exhibits quirky behavior when being maximized. The window is resized to the proper size, but it is shifted upwards about half the height of the title bar. Similarly, a window whose origin is above the top of the screen will spontaneously move its upper-left origin upon being resized. After two such resize-induced moves, the title bar will be entirely off the top edge of the screen. Subsequently, when the mouse is clicked and released on the window border, the window will shrink its height spontaneously. This height shrinkage occurs even if the user did not resize the border. To observe this curious situation, please invoke: SDL-1.2.8/test/testwm.exe -resize Cause: A pair of integers, SDL_windowX and SDL_windowY, are defined in video/wincommon/SDL_sysevents.c. They are used by the DirectX video driver and the DIB video driver: video/windx5/SDL_dx5video.c video/windib/SDL_dibvideo.c As I understand the source code, the primary use of these variables is to create a rectangle that represents the surface area in CLIENT SPACE. Client space refers to a coordinate system that originates at the upper left corner of a Win32 Window's drawable area. This is just inside the window border and title bar. This client space rectangle, called bounds, is subsequently converted to screen space with a call to AdjustWindowRectEx. The problem is found in SDL's handling of the WM_WINDOWPOSCHANGED message. According to MSDN, "The WM_WINDOWPOSCHANGED message is sent to a window whose size, position, or place in the Z order has changed as a result of a call to the SetWindowPos function or another window-management function." I have confirmed that this message is indeed being sent to the SDL window when the mouse is clicked on the window border, even if the window border is not dragged. In video/wincommon/SDL_sysevents.c, on line 464, in response to the WM_WINDOWPOSCHANGED message, the (potentially) new client rectangle is obtained. This rectangle is translated into screen coordinates and THEN assigned to the SDL_windowX and Y variables. Thus screen coordinates are being assigned to client coordinate variables. Once this is understood, the solution is apparent: assign SDL_windowX and Y before translating the rectangle to screen coordinates. This is accomplished by the following patch. -Mike_L
author Sam Lantinga <slouken@libsdl.org>
date Sun, 29 Jan 2006 08:50:06 +0000
parents 4095d9ca23f2
children c9b51268668f
line wrap: on
line source

/*
    SDL - Simple DirectMedia Layer
    Copyright (C) 1997-2004 Sam Lantinga

    This library is free software; you can redistribute it and/or
    modify it under the terms of the GNU Library General Public
    License as published by the Free Software Foundation; either
    version 2 of the License, or (at your option) any later version.

    This library is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
    Library General Public License for more details.

    You should have received a copy of the GNU Library General Public
    License along with this library; if not, write to the Free
    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

    Sam Lantinga
    slouken@libsdl.org
*/

#ifdef SAVE_RCSID
static char rcsid =
 "@(#) $Id$";
#endif

/* Functions for audio drivers to perform runtime conversion of audio format */

#include <stdio.h>

#include "SDL_error.h"
#include "SDL_audio.h"


/* Effectively mix right and left channels into a single channel */
void SDL_ConvertMono(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Sint32 sample;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting to mono\n");
#endif
	switch (format&0x8018) {

		case AUDIO_U8: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			for ( i=cvt->len_cvt/2; i; --i ) {
				sample = src[0] + src[1];
				if ( sample > 255 ) {
					*dst = 255;
				} else {
					*dst = sample;
				}
				src += 2;
				dst += 1;
			}
		}
		break;

		case AUDIO_S8: {
			Sint8 *src, *dst;

			src = (Sint8 *)cvt->buf;
			dst = (Sint8 *)cvt->buf;
			for ( i=cvt->len_cvt/2; i; --i ) {
				sample = src[0] + src[1];
				if ( sample > 127 ) {
					*dst = 127;
				} else
				if ( sample < -128 ) {
					*dst = -128;
				} else {
					*dst = sample;
				}
				src += 2;
				dst += 1;
			}
		}
		break;

		case AUDIO_U16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					sample = (Uint16)((src[0]<<8)|src[1])+
					         (Uint16)((src[2]<<8)|src[3]);
					if ( sample > 65535 ) {
						dst[0] = 0xFF;
						dst[1] = 0xFF;
					} else {
						dst[1] = (sample&0xFF);
						sample >>= 8;
						dst[0] = (sample&0xFF);
					}
					src += 4;
					dst += 2;
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					sample = (Uint16)((src[1]<<8)|src[0])+
					         (Uint16)((src[3]<<8)|src[2]);
					if ( sample > 65535 ) {
						dst[0] = 0xFF;
						dst[1] = 0xFF;
					} else {
						dst[0] = (sample&0xFF);
						sample >>= 8;
						dst[1] = (sample&0xFF);
					}
					src += 4;
					dst += 2;
				}
			}
		}
		break;

		case AUDIO_S16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					sample = (Sint16)((src[0]<<8)|src[1])+
					         (Sint16)((src[2]<<8)|src[3]);
					if ( sample > 32767 ) {
						dst[0] = 0x7F;
						dst[1] = 0xFF;
					} else
					if ( sample < -32768 ) {
						dst[0] = 0x80;
						dst[1] = 0x00;
					} else {
						dst[1] = (sample&0xFF);
						sample >>= 8;
						dst[0] = (sample&0xFF);
					}
					src += 4;
					dst += 2;
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					sample = (Sint16)((src[1]<<8)|src[0])+
					         (Sint16)((src[3]<<8)|src[2]);
					if ( sample > 32767 ) {
						dst[1] = 0x7F;
						dst[0] = 0xFF;
					} else
					if ( sample < -32768 ) {
						dst[1] = 0x80;
						dst[0] = 0x00;
					} else {
						dst[0] = (sample&0xFF);
						sample >>= 8;
						dst[1] = (sample&0xFF);
					}
					src += 4;
					dst += 2;
				}
			}
		}
		break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Discard top 4 channels */
void SDL_ConvertStrip(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Sint32 lsample, rsample;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting down to stereo\n");
#endif
	switch (format&0x8018) {

		case AUDIO_U8: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			for ( i=cvt->len_cvt/6; i; --i ) {
				lsample = src[0];
				rsample = src[1];
				dst[0] = lsample;
				dst[1] = rsample;
				src += 6;
				dst += 2;
			}
		}
		break;

		case AUDIO_S8: {
			Sint8 *src, *dst;

			src = (Sint8 *)cvt->buf;
			dst = (Sint8 *)cvt->buf;
			for ( i=cvt->len_cvt/6; i; --i ) {
				lsample = src[0];
				rsample = src[1];
				dst[0] = lsample;
				dst[1] = rsample;
				src += 6;
				dst += 2;
			}
		}
		break;

		case AUDIO_U16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/12; i; --i ) {
					lsample = (Uint16)((src[0]<<8)|src[1]);
					rsample = (Uint16)((src[2]<<8)|src[3]);
						dst[1] = (lsample&0xFF);
						lsample >>= 8;
						dst[0] = (lsample&0xFF);
						dst[3] = (rsample&0xFF);
						rsample >>= 8;
						dst[2] = (rsample&0xFF);
					src += 12;
					dst += 4;
				}
			} else {
				for ( i=cvt->len_cvt/12; i; --i ) {
					lsample = (Uint16)((src[1]<<8)|src[0]);
					rsample = (Uint16)((src[3]<<8)|src[2]);
						dst[0] = (lsample&0xFF);
						lsample >>= 8;
						dst[1] = (lsample&0xFF);
						dst[2] = (rsample&0xFF);
						rsample >>= 8;
						dst[3] = (rsample&0xFF);
					src += 12;
					dst += 4;
				}
			}
		}
		break;

		case AUDIO_S16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/12; i; --i ) {
					lsample = (Sint16)((src[0]<<8)|src[1]);
					rsample = (Sint16)((src[2]<<8)|src[3]);
						dst[1] = (lsample&0xFF);
						lsample >>= 8;
						dst[0] = (lsample&0xFF);
						dst[3] = (rsample&0xFF);
						rsample >>= 8;
						dst[2] = (rsample&0xFF);
					src += 12;
					dst += 4;
				}
			} else {
				for ( i=cvt->len_cvt/12; i; --i ) {
					lsample = (Sint16)((src[1]<<8)|src[0]);
					rsample = (Sint16)((src[3]<<8)|src[2]);
						dst[0] = (lsample&0xFF);
						lsample >>= 8;
						dst[1] = (lsample&0xFF);
						dst[2] = (rsample&0xFF);
						rsample >>= 8;
						dst[3] = (rsample&0xFF);
					src += 12;
					dst += 4;
				}
			}
		}
		break;
	}
	cvt->len_cvt /= 3;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Discard top 2 channels of 6 */
void SDL_ConvertStrip_2(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Sint32 lsample, rsample;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting 6 down to quad\n");
#endif
	switch (format&0x8018) {

		case AUDIO_U8: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			for ( i=cvt->len_cvt/4; i; --i ) {
				lsample = src[0];
				rsample = src[1];
				dst[0] = lsample;
				dst[1] = rsample;
				src += 4;
				dst += 2;
			}
		}
		break;

		case AUDIO_S8: {
			Sint8 *src, *dst;

			src = (Sint8 *)cvt->buf;
			dst = (Sint8 *)cvt->buf;
			for ( i=cvt->len_cvt/4; i; --i ) {
				lsample = src[0];
				rsample = src[1];
				dst[0] = lsample;
				dst[1] = rsample;
				src += 4;
				dst += 2;
			}
		}
		break;

		case AUDIO_U16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/8; i; --i ) {
					lsample = (Uint16)((src[0]<<8)|src[1]);
					rsample = (Uint16)((src[2]<<8)|src[3]);
						dst[1] = (lsample&0xFF);
						lsample >>= 8;
						dst[0] = (lsample&0xFF);
						dst[3] = (rsample&0xFF);
						rsample >>= 8;
						dst[2] = (rsample&0xFF);
					src += 8;
					dst += 4;
				}
			} else {
				for ( i=cvt->len_cvt/8; i; --i ) {
					lsample = (Uint16)((src[1]<<8)|src[0]);
					rsample = (Uint16)((src[3]<<8)|src[2]);
						dst[0] = (lsample&0xFF);
						lsample >>= 8;
						dst[1] = (lsample&0xFF);
						dst[2] = (rsample&0xFF);
						rsample >>= 8;
						dst[3] = (rsample&0xFF);
					src += 8;
					dst += 4;
				}
			}
		}
		break;

		case AUDIO_S16: {
			Uint8 *src, *dst;

			src = cvt->buf;
			dst = cvt->buf;
			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/8; i; --i ) {
					lsample = (Sint16)((src[0]<<8)|src[1]);
					rsample = (Sint16)((src[2]<<8)|src[3]);
						dst[1] = (lsample&0xFF);
						lsample >>= 8;
						dst[0] = (lsample&0xFF);
						dst[3] = (rsample&0xFF);
						rsample >>= 8;
						dst[2] = (rsample&0xFF);
					src += 8;
					dst += 4;
				}
			} else {
				for ( i=cvt->len_cvt/8; i; --i ) {
					lsample = (Sint16)((src[1]<<8)|src[0]);
					rsample = (Sint16)((src[3]<<8)|src[2]);
						dst[0] = (lsample&0xFF);
						lsample >>= 8;
						dst[1] = (lsample&0xFF);
						dst[2] = (rsample&0xFF);
						rsample >>= 8;
						dst[3] = (rsample&0xFF);
					src += 8;
					dst += 4;
				}
			}
		}
		break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Duplicate a mono channel to both stereo channels */
void SDL_ConvertStereo(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting to stereo\n");
#endif
	if ( (format & 0xFF) == 16 ) {
		Uint16 *src, *dst;

		src = (Uint16 *)(cvt->buf+cvt->len_cvt);
		dst = (Uint16 *)(cvt->buf+cvt->len_cvt*2);
		for ( i=cvt->len_cvt/2; i; --i ) {
			dst -= 2;
			src -= 1;
			dst[0] = src[0];
			dst[1] = src[0];
		}
	} else {
		Uint8 *src, *dst;

		src = cvt->buf+cvt->len_cvt;
		dst = cvt->buf+cvt->len_cvt*2;
		for ( i=cvt->len_cvt; i; --i ) {
			dst -= 2;
			src -= 1;
			dst[0] = src[0];
			dst[1] = src[0];
		}
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Duplicate a stereo channel to a pseudo-5.1 stream */
void SDL_ConvertSurround(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting stereo to surround\n");
#endif
	switch (format&0x8018) {

		case AUDIO_U8: {
			Uint8 *src, *dst, lf, rf, ce;

			src = (Uint8 *)(cvt->buf+cvt->len_cvt);
			dst = (Uint8 *)(cvt->buf+cvt->len_cvt*3);
			for ( i=cvt->len_cvt; i; --i ) {
				dst -= 6;
				src -= 2;
				lf = src[0];
				rf = src[1];
				ce = (lf/2) + (rf/2);
				dst[0] = lf;
				dst[1] = rf;
				dst[2] = lf - ce;
				dst[3] = rf - ce;
				dst[4] = ce;
				dst[5] = ce;
			}
		}
		break;

		case AUDIO_S8: {
			Sint8 *src, *dst, lf, rf, ce;

			src = (Sint8 *)cvt->buf+cvt->len_cvt;
			dst = (Sint8 *)cvt->buf+cvt->len_cvt*3;
			for ( i=cvt->len_cvt; i; --i ) {
				dst -= 6;
				src -= 2;
				lf = src[0];
				rf = src[1];
				ce = (lf/2) + (rf/2);
				dst[0] = lf;
				dst[1] = rf;
				dst[2] = lf - ce;
				dst[3] = rf - ce;
				dst[4] = ce;
				dst[5] = ce;
			}
		}
		break;

		case AUDIO_U16: {
			Uint8 *src, *dst;
			Uint16 lf, rf, ce, lr, rr;

			src = cvt->buf+cvt->len_cvt;
			dst = cvt->buf+cvt->len_cvt*3;

			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 12;
					src -= 4;
					lf = (Uint16)((src[0]<<8)|src[1]);
					rf = (Uint16)((src[2]<<8)|src[3]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[1] = (lf&0xFF);
						dst[0] = ((lf>>8)&0xFF);
						dst[3] = (rf&0xFF);
						dst[2] = ((rf>>8)&0xFF);

						dst[1+4] = (lr&0xFF);
						dst[0+4] = ((lr>>8)&0xFF);
						dst[3+4] = (rr&0xFF);
						dst[2+4] = ((rr>>8)&0xFF);

						dst[1+8] = (ce&0xFF);
						dst[0+8] = ((ce>>8)&0xFF);
						dst[3+8] = (ce&0xFF);
						dst[2+8] = ((ce>>8)&0xFF);
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 12;
					src -= 4;
					lf = (Uint16)((src[1]<<8)|src[0]);
					rf = (Uint16)((src[3]<<8)|src[2]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[0] = (lf&0xFF);
						dst[1] = ((lf>>8)&0xFF);
						dst[2] = (rf&0xFF);
						dst[3] = ((rf>>8)&0xFF);

						dst[0+4] = (lr&0xFF);
						dst[1+4] = ((lr>>8)&0xFF);
						dst[2+4] = (rr&0xFF);
						dst[3+4] = ((rr>>8)&0xFF);

						dst[0+8] = (ce&0xFF);
						dst[1+8] = ((ce>>8)&0xFF);
						dst[2+8] = (ce&0xFF);
						dst[3+8] = ((ce>>8)&0xFF);
				}
			}
		}
		break;

		case AUDIO_S16: {
			Uint8 *src, *dst;
			Sint16 lf, rf, ce, lr, rr;

			src = cvt->buf+cvt->len_cvt;
			dst = cvt->buf+cvt->len_cvt*3;

			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 12;
					src -= 4;
					lf = (Sint16)((src[0]<<8)|src[1]);
					rf = (Sint16)((src[2]<<8)|src[3]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[1] = (lf&0xFF);
						dst[0] = ((lf>>8)&0xFF);
						dst[3] = (rf&0xFF);
						dst[2] = ((rf>>8)&0xFF);

						dst[1+4] = (lr&0xFF);
						dst[0+4] = ((lr>>8)&0xFF);
						dst[3+4] = (rr&0xFF);
						dst[2+4] = ((rr>>8)&0xFF);

						dst[1+8] = (ce&0xFF);
						dst[0+8] = ((ce>>8)&0xFF);
						dst[3+8] = (ce&0xFF);
						dst[2+8] = ((ce>>8)&0xFF);
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 12;
					src -= 4;
					lf = (Sint16)((src[1]<<8)|src[0]);
					rf = (Sint16)((src[3]<<8)|src[2]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[0] = (lf&0xFF);
						dst[1] = ((lf>>8)&0xFF);
						dst[2] = (rf&0xFF);
						dst[3] = ((rf>>8)&0xFF);

						dst[0+4] = (lr&0xFF);
						dst[1+4] = ((lr>>8)&0xFF);
						dst[2+4] = (rr&0xFF);
						dst[3+4] = ((rr>>8)&0xFF);

						dst[0+8] = (ce&0xFF);
						dst[1+8] = ((ce>>8)&0xFF);
						dst[2+8] = (ce&0xFF);
						dst[3+8] = ((ce>>8)&0xFF);
				}
			}
		}
		break;
	}
	cvt->len_cvt *= 3;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Duplicate a stereo channel to a pseudo-4.0 stream */
void SDL_ConvertSurround_4(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting stereo to quad\n");
#endif
	switch (format&0x8018) {

		case AUDIO_U8: {
			Uint8 *src, *dst, lf, rf, ce;

			src = (Uint8 *)(cvt->buf+cvt->len_cvt);
			dst = (Uint8 *)(cvt->buf+cvt->len_cvt*2);
			for ( i=cvt->len_cvt; i; --i ) {
				dst -= 4;
				src -= 2;
				lf = src[0];
				rf = src[1];
				ce = (lf/2) + (rf/2);
				dst[0] = lf;
				dst[1] = rf;
				dst[2] = lf - ce;
				dst[3] = rf - ce;
			}
		}
		break;

		case AUDIO_S8: {
			Sint8 *src, *dst, lf, rf, ce;

			src = (Sint8 *)cvt->buf+cvt->len_cvt;
			dst = (Sint8 *)cvt->buf+cvt->len_cvt*2;
			for ( i=cvt->len_cvt; i; --i ) {
				dst -= 4;
				src -= 2;
				lf = src[0];
				rf = src[1];
				ce = (lf/2) + (rf/2);
				dst[0] = lf;
				dst[1] = rf;
				dst[2] = lf - ce;
				dst[3] = rf - ce;
			}
		}
		break;

		case AUDIO_U16: {
			Uint8 *src, *dst;
			Uint16 lf, rf, ce, lr, rr;

			src = cvt->buf+cvt->len_cvt;
			dst = cvt->buf+cvt->len_cvt*2;

			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 8;
					src -= 4;
					lf = (Uint16)((src[0]<<8)|src[1]);
					rf = (Uint16)((src[2]<<8)|src[3]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[1] = (lf&0xFF);
						dst[0] = ((lf>>8)&0xFF);
						dst[3] = (rf&0xFF);
						dst[2] = ((rf>>8)&0xFF);

						dst[1+4] = (lr&0xFF);
						dst[0+4] = ((lr>>8)&0xFF);
						dst[3+4] = (rr&0xFF);
						dst[2+4] = ((rr>>8)&0xFF);
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 8;
					src -= 4;
					lf = (Uint16)((src[1]<<8)|src[0]);
					rf = (Uint16)((src[3]<<8)|src[2]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[0] = (lf&0xFF);
						dst[1] = ((lf>>8)&0xFF);
						dst[2] = (rf&0xFF);
						dst[3] = ((rf>>8)&0xFF);

						dst[0+4] = (lr&0xFF);
						dst[1+4] = ((lr>>8)&0xFF);
						dst[2+4] = (rr&0xFF);
						dst[3+4] = ((rr>>8)&0xFF);
				}
			}
		}
		break;

		case AUDIO_S16: {
			Uint8 *src, *dst;
			Sint16 lf, rf, ce, lr, rr;

			src = cvt->buf+cvt->len_cvt;
			dst = cvt->buf+cvt->len_cvt*2;

			if ( (format & 0x1000) == 0x1000 ) {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 8;
					src -= 4;
					lf = (Sint16)((src[0]<<8)|src[1]);
					rf = (Sint16)((src[2]<<8)|src[3]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[1] = (lf&0xFF);
						dst[0] = ((lf>>8)&0xFF);
						dst[3] = (rf&0xFF);
						dst[2] = ((rf>>8)&0xFF);

						dst[1+4] = (lr&0xFF);
						dst[0+4] = ((lr>>8)&0xFF);
						dst[3+4] = (rr&0xFF);
						dst[2+4] = ((rr>>8)&0xFF);
				}
			} else {
				for ( i=cvt->len_cvt/4; i; --i ) {
					dst -= 8;
					src -= 4;
					lf = (Sint16)((src[1]<<8)|src[0]);
					rf = (Sint16)((src[3]<<8)|src[2]);
					ce = (lf/2) + (rf/2);
					rr = lf - ce;
					lr = rf - ce;
						dst[0] = (lf&0xFF);
						dst[1] = ((lf>>8)&0xFF);
						dst[2] = (rf&0xFF);
						dst[3] = ((rf>>8)&0xFF);

						dst[0+4] = (lr&0xFF);
						dst[1+4] = ((lr>>8)&0xFF);
						dst[2+4] = (rr&0xFF);
						dst[3+4] = ((rr>>8)&0xFF);
				}
			}
		}
		break;
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Convert 8-bit to 16-bit - LSB */
void SDL_Convert16LSB(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting to 16-bit LSB\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	for ( i=cvt->len_cvt; i; --i ) {
		src -= 1;
		dst -= 2;
		dst[1] = *src;
		dst[0] = 0;
	}
	format = ((format & ~0x0008) | AUDIO_U16LSB);
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}
/* Convert 8-bit to 16-bit - MSB */
void SDL_Convert16MSB(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting to 16-bit MSB\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	for ( i=cvt->len_cvt; i; --i ) {
		src -= 1;
		dst -= 2;
		dst[0] = *src;
		dst[1] = 0;
	}
	format = ((format & ~0x0008) | AUDIO_U16MSB);
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Convert 16-bit to 8-bit */
void SDL_Convert8(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting to 8-bit\n");
#endif
	src = cvt->buf;
	dst = cvt->buf;
	if ( (format & 0x1000) != 0x1000 ) { /* Little endian */
		++src;
	}
	for ( i=cvt->len_cvt/2; i; --i ) {
		*dst = *src;
		src += 2;
		dst += 1;
	}
	format = ((format & ~0x9010) | AUDIO_U8);
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Toggle signed/unsigned */
void SDL_ConvertSign(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *data;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio signedness\n");
#endif
	data = cvt->buf;
	if ( (format & 0xFF) == 16 ) {
		if ( (format & 0x1000) != 0x1000 ) { /* Little endian */
			++data;
		}
		for ( i=cvt->len_cvt/2; i; --i ) {
			*data ^= 0x80;
			data += 2;
		}
	} else {
		for ( i=cvt->len_cvt; i; --i ) {
			*data++ ^= 0x80;
		}
	}
	format = (format ^ 0x8000);
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Toggle endianness */
void SDL_ConvertEndian(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *data, tmp;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio endianness\n");
#endif
	data = cvt->buf;
	for ( i=cvt->len_cvt/2; i; --i ) {
		tmp = data[0];
		data[0] = data[1];
		data[1] = tmp;
		data += 2;
	}
	format = (format ^ 0x1000);
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Convert rate up by multiple of 2 */
void SDL_RateMUL2(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate * 2\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt; i; --i ) {
				src -= 1;
				dst -= 2;
				dst[0] = src[0];
				dst[1] = src[0];
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/2; i; --i ) {
				src -= 2;
				dst -= 4;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[0];
				dst[3] = src[1];
			}
			break;
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Convert rate up by multiple of 2, for stereo */
void SDL_RateMUL2_c2(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate * 2\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/2; i; --i ) {
				src -= 2;
				dst -= 4;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[0];
				dst[3] = src[1];
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/4; i; --i ) {
				src -= 4;
				dst -= 8;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[0];
				dst[5] = src[1];
				dst[6] = src[2];
				dst[7] = src[3];
			}
			break;
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Convert rate up by multiple of 2, for quad */
void SDL_RateMUL2_c4(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate * 2\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/4; i; --i ) {
				src -= 4;
				dst -= 8;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[0];
				dst[5] = src[1];
				dst[6] = src[2];
				dst[7] = src[3];
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/8; i; --i ) {
				src -= 8;
				dst -= 16;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				dst[6] = src[6];
				dst[7] = src[7];
				dst[8] = src[0];
				dst[9] = src[1];
				dst[10] = src[2];
				dst[11] = src[3];
				dst[12] = src[4];
				dst[13] = src[5];
				dst[14] = src[6];
				dst[15] = src[7];
			}
			break;
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Convert rate up by multiple of 2, for 5.1 */
void SDL_RateMUL2_c6(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate * 2\n");
#endif
	src = cvt->buf+cvt->len_cvt;
	dst = cvt->buf+cvt->len_cvt*2;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/6; i; --i ) {
				src -= 6;
				dst -= 12;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				dst[6] = src[0];
				dst[7] = src[1];
				dst[8] = src[2];
				dst[9] = src[3];
				dst[10] = src[4];
				dst[11] = src[5];
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/12; i; --i ) {
				src -= 12;
				dst -= 24;
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				dst[6] = src[6];
				dst[7] = src[7];
				dst[8] = src[8];
				dst[9] = src[9];
				dst[10] = src[10];
				dst[11] = src[11];
				dst[12] = src[0];
				dst[13] = src[1];
				dst[14] = src[2];
				dst[15] = src[3];
				dst[16] = src[4];
				dst[17] = src[5];
				dst[18] = src[6];
				dst[19] = src[7];
				dst[20] = src[8];
				dst[21] = src[9];
				dst[22] = src[10];
				dst[23] = src[11];
			}
			break;
	}
	cvt->len_cvt *= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Convert rate down by multiple of 2 */
void SDL_RateDIV2(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate / 2\n");
#endif
	src = cvt->buf;
	dst = cvt->buf;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/2; i; --i ) {
				dst[0] = src[0];
				src += 2;
				dst += 1;
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/4; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				src += 4;
				dst += 2;
			}
			break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Convert rate down by multiple of 2, for stereo */
void SDL_RateDIV2_c2(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate / 2\n");
#endif
	src = cvt->buf;
	dst = cvt->buf;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/4; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				src += 4;
				dst += 2;
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/8; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				src += 8;
				dst += 4;
			}
			break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}


/* Convert rate down by multiple of 2, for quad */
void SDL_RateDIV2_c4(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate / 2\n");
#endif
	src = cvt->buf;
	dst = cvt->buf;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/8; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				src += 8;
				dst += 4;
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/16; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				dst[6] = src[6];
				dst[7] = src[7];
				src += 16;
				dst += 8;
			}
			break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Convert rate down by multiple of 2, for 5.1 */
void SDL_RateDIV2_c6(SDL_AudioCVT *cvt, Uint16 format)
{
	int i;
	Uint8 *src, *dst;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate / 2\n");
#endif
	src = cvt->buf;
	dst = cvt->buf;
	switch (format & 0xFF) {
		case 8:
			for ( i=cvt->len_cvt/12; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				src += 12;
				dst += 6;
			}
			break;
		case 16:
			for ( i=cvt->len_cvt/24; i; --i ) {
				dst[0] = src[0];
				dst[1] = src[1];
				dst[2] = src[2];
				dst[3] = src[3];
				dst[4] = src[4];
				dst[5] = src[5];
				dst[6] = src[6];
				dst[7] = src[7];
				dst[8] = src[8];
				dst[9] = src[9];
				dst[10] = src[10];
				dst[11] = src[11];
				src += 24;
				dst += 12;
			}
			break;
	}
	cvt->len_cvt /= 2;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

/* Very slow rate conversion routine */
void SDL_RateSLOW(SDL_AudioCVT *cvt, Uint16 format)
{
	double ipos;
	int i, clen;

#ifdef DEBUG_CONVERT
	fprintf(stderr, "Converting audio rate * %4.4f\n", 1.0/cvt->rate_incr);
#endif
	clen = (int)((double)cvt->len_cvt / cvt->rate_incr);
	if ( cvt->rate_incr > 1.0 ) {
		switch (format & 0xFF) {
			case 8: {
				Uint8 *output;

				output = cvt->buf;
				ipos = 0.0;
				for ( i=clen; i; --i ) {
					*output = cvt->buf[(int)ipos];
					ipos += cvt->rate_incr;
					output += 1;
				}
			}
			break;

			case 16: {
				Uint16 *output;

				clen &= ~1;
				output = (Uint16 *)cvt->buf;
				ipos = 0.0;
				for ( i=clen/2; i; --i ) {
					*output=((Uint16 *)cvt->buf)[(int)ipos];
					ipos += cvt->rate_incr;
					output += 1;
				}
			}
			break;
		}
	} else {
		switch (format & 0xFF) {
			case 8: {
				Uint8 *output;

				output = cvt->buf+clen;
				ipos = (double)cvt->len_cvt;
				for ( i=clen; i; --i ) {
					ipos -= cvt->rate_incr;
					output -= 1;
					*output = cvt->buf[(int)ipos];
				}
			}
			break;

			case 16: {
				Uint16 *output;

				clen &= ~1;
				output = (Uint16 *)(cvt->buf+clen);
				ipos = (double)cvt->len_cvt/2;
				for ( i=clen/2; i; --i ) {
					ipos -= cvt->rate_incr;
					output -= 1;
					*output=((Uint16 *)cvt->buf)[(int)ipos];
				}
			}
			break;
		}
	}
	cvt->len_cvt = clen;
	if ( cvt->filters[++cvt->filter_index] ) {
		cvt->filters[cvt->filter_index](cvt, format);
	}
}

int SDL_ConvertAudio(SDL_AudioCVT *cvt)
{
	/* Make sure there's data to convert */
	if ( cvt->buf == NULL ) {
		SDL_SetError("No buffer allocated for conversion");
		return(-1);
	}
	/* Return okay if no conversion is necessary */
	cvt->len_cvt = cvt->len;
	if ( cvt->filters[0] == NULL ) {
		return(0);
	}

	/* Set up the conversion and go! */
	cvt->filter_index = 0;
	cvt->filters[0](cvt, cvt->src_format);
	return(0);
}

/* Creates a set of audio filters to convert from one format to another. 
   Returns -1 if the format conversion is not supported, or 1 if the
   audio filter is set up.
*/
  
int SDL_BuildAudioCVT(SDL_AudioCVT *cvt,
	Uint16 src_format, Uint8 src_channels, int src_rate,
	Uint16 dst_format, Uint8 dst_channels, int dst_rate)
{
/*printf("Build format %04x->%04x, channels %u->%u, rate %d->%d\n",
		src_format, dst_format, src_channels, dst_channels, src_rate, dst_rate);*/
	/* Start off with no conversion necessary */
	cvt->needed = 0;
	cvt->filter_index = 0;
	cvt->filters[0] = NULL;
	cvt->len_mult = 1;
	cvt->len_ratio = 1.0;

	/* First filter:  Endian conversion from src to dst */
	if ( (src_format & 0x1000) != (dst_format & 0x1000)
	     && ((src_format & 0xff) != 8) ) {
		cvt->filters[cvt->filter_index++] = SDL_ConvertEndian;
	}
	
	/* Second filter: Sign conversion -- signed/unsigned */
	if ( (src_format & 0x8000) != (dst_format & 0x8000) ) {
		cvt->filters[cvt->filter_index++] = SDL_ConvertSign;
	}

	/* Next filter:  Convert 16 bit <--> 8 bit PCM */
	if ( (src_format & 0xFF) != (dst_format & 0xFF) ) {
		switch (dst_format&0x10FF) {
			case AUDIO_U8:
				cvt->filters[cvt->filter_index++] =
							 SDL_Convert8;
				cvt->len_ratio /= 2;
				break;
			case AUDIO_U16LSB:
				cvt->filters[cvt->filter_index++] =
							SDL_Convert16LSB;
				cvt->len_mult *= 2;
				cvt->len_ratio *= 2;
				break;
			case AUDIO_U16MSB:
				cvt->filters[cvt->filter_index++] =
							SDL_Convert16MSB;
				cvt->len_mult *= 2;
				cvt->len_ratio *= 2;
				break;
		}
	}

	/* Last filter:  Mono/Stereo conversion */
	if ( src_channels != dst_channels ) {
		if ( (src_channels == 1) && (dst_channels > 1) ) {
			cvt->filters[cvt->filter_index++] = 
						SDL_ConvertStereo;
			cvt->len_mult *= 2;
			src_channels = 2;
			cvt->len_ratio *= 2;
		}
		if ( (src_channels == 2) &&
				(dst_channels == 6) ) {
			cvt->filters[cvt->filter_index++] =
						 SDL_ConvertSurround;
			src_channels = 6;
			cvt->len_mult *= 3;
			cvt->len_ratio *= 3;
		}
		if ( (src_channels == 2) &&
				(dst_channels == 4) ) {
			cvt->filters[cvt->filter_index++] =
						 SDL_ConvertSurround_4;
			src_channels = 4;
			cvt->len_mult *= 2;
			cvt->len_ratio *= 2;
		}
		while ( (src_channels*2) <= dst_channels ) {
			cvt->filters[cvt->filter_index++] = 
						SDL_ConvertStereo;
			cvt->len_mult *= 2;
			src_channels *= 2;
			cvt->len_ratio *= 2;
		}
		if ( (src_channels == 6) &&
				(dst_channels <= 2) ) {
			cvt->filters[cvt->filter_index++] =
						 SDL_ConvertStrip;
			src_channels = 2;
			cvt->len_ratio /= 3;
		}
		if ( (src_channels == 6) &&
				(dst_channels == 4) ) {
			cvt->filters[cvt->filter_index++] =
						 SDL_ConvertStrip_2;
			src_channels = 4;
			cvt->len_ratio /= 2;
		}
		/* This assumes that 4 channel audio is in the format:
		     Left {front/back} + Right {front/back}
		   so converting to L/R stereo works properly.
		 */
		while ( ((src_channels%2) == 0) &&
				((src_channels/2) >= dst_channels) ) {
			cvt->filters[cvt->filter_index++] =
						 SDL_ConvertMono;
			src_channels /= 2;
			cvt->len_ratio /= 2;
		}
		if ( src_channels != dst_channels ) {
			/* Uh oh.. */;
		}
	}

	/* Do rate conversion */
	cvt->rate_incr = 0.0;
	if ( (src_rate/100) != (dst_rate/100) ) {
		Uint32 hi_rate, lo_rate;
		int len_mult;
		double len_ratio;
		void (*rate_cvt)(SDL_AudioCVT *cvt, Uint16 format);

		if ( src_rate > dst_rate ) {
			hi_rate = src_rate;
			lo_rate = dst_rate;
			switch (src_channels) {
				case 1: rate_cvt = SDL_RateDIV2; break;
				case 2: rate_cvt = SDL_RateDIV2_c2; break;
				case 4: rate_cvt = SDL_RateDIV2_c4; break;
				case 6: rate_cvt = SDL_RateDIV2_c6; break;
				default: return -1;
			}
			len_mult = 1;
			len_ratio = 0.5;
		} else {
			hi_rate = dst_rate;
			lo_rate = src_rate;
			switch (src_channels) {
				case 1: rate_cvt = SDL_RateMUL2; break;
				case 2: rate_cvt = SDL_RateMUL2_c2; break;
				case 4: rate_cvt = SDL_RateMUL2_c4; break;
				case 6: rate_cvt = SDL_RateMUL2_c6; break;
				default: return -1;
			}
			len_mult = 2;
			len_ratio = 2.0;
		}
		/* If hi_rate = lo_rate*2^x then conversion is easy */
		while ( ((lo_rate*2)/100) <= (hi_rate/100) ) {
			cvt->filters[cvt->filter_index++] = rate_cvt;
			cvt->len_mult *= len_mult;
			lo_rate *= 2;
			cvt->len_ratio *= len_ratio;
		}
		/* We may need a slow conversion here to finish up */
		if ( (lo_rate/100) != (hi_rate/100) ) {
#if 1
			/* The problem with this is that if the input buffer is
			   say 1K, and the conversion rate is say 1.1, then the
			   output buffer is 1.1K, which may not be an acceptable
			   buffer size for the audio driver (not a power of 2)
			*/
			/* For now, punt and hope the rate distortion isn't great.
			*/
#else
			if ( src_rate < dst_rate ) {
				cvt->rate_incr = (double)lo_rate/hi_rate;
				cvt->len_mult *= 2;
				cvt->len_ratio /= cvt->rate_incr;
			} else {
				cvt->rate_incr = (double)hi_rate/lo_rate;
				cvt->len_ratio *= cvt->rate_incr;
			}
			cvt->filters[cvt->filter_index++] = SDL_RateSLOW;
#endif
		}
	}

	/* Set up the filter information */
	if ( cvt->filter_index != 0 ) {
		cvt->needed = 1;
		cvt->src_format = src_format;
		cvt->dst_format = dst_format;
		cvt->len = 0;
		cvt->buf = NULL;
		cvt->filters[cvt->filter_index] = NULL;
	}
	return(cvt->needed);
}