Mercurial > sdl-ios-xcode
view src/video/ps3/spulibs/yuv2rgb.c @ 4633:100f7ab48946
Documentation and code safety updates. (x11 renderer)
author | Sunny Sachanandani <sunnysachanandani@gmail.com> |
---|---|
date | Sun, 08 Aug 2010 19:26:30 +0530 |
parents | 94fb40a4a9a7 |
children |
line wrap: on
line source
/* * SDL - Simple DirectMedia Layer * CELL BE Support for PS3 Framebuffer * Copyright (C) 2008, 2009 International Business Machines Corporation * * This library is free software; you can redistribute it and/or modify it * under the terms of the GNU Lesser General Public License as published * by the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 * USA * * Martin Lowinski <lowinski [at] de [dot] ibm [ibm] com> * Dirk Herrendoerfer <d.herrendoerfer [at] de [dot] ibm [dot] com> * SPE code based on research by: * Rene Becker * Thimo Emmerich */ #include "spu_common.h" #include <spu_intrinsics.h> #include <spu_mfcio.h> // Debugging //#define DEBUG // Test environment for /2 resolutions //#define TESTING #ifdef DEBUG #define deprintf(fmt, args... ) \ fprintf( stdout, fmt, ##args ); \ fflush( stdout ); #else #define deprintf( fmt, args... ) #endif struct yuv2rgb_parms_t parms_converter __attribute__((aligned(128))); /* A maximum of 8 lines Y, therefore 4 lines V, 4 lines U are stored * there might be the need to retrieve misaligned data, adjust * incoming v and u plane to be able to handle this (add 128) */ unsigned char y_plane[2][(MAX_HDTV_WIDTH + 128) * 4] __attribute__((aligned(128))); unsigned char v_plane[2][(MAX_HDTV_WIDTH + 128) * 2] __attribute__((aligned(128))); unsigned char u_plane[2][(MAX_HDTV_WIDTH + 128) * 2] __attribute__((aligned(128))); /* A maximum of 4 lines BGRA are stored, 4 byte per pixel */ unsigned char bgra[4 * MAX_HDTV_WIDTH * 4] __attribute__((aligned(128))); /* some vectors needed by the float to int conversion */ static const vector float vec_255 = { 255.0f, 255.0f, 255.0f, 255.0f }; static const vector float vec_0_1 = { 0.1f, 0.1f, 0.1f, 0.1f }; void yuv_to_rgb_w16(); void yuv_to_rgb_w32(); void yuv_to_rgb_w2_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr, unsigned int width); void yuv_to_rgb_w32_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_, unsigned int width); int main(unsigned long long spe_id __attribute__((unused)), unsigned long long argp __attribute__ ((unused))) { deprintf("[SPU] yuv2rgb_spu is up... (on SPE #%llu)\n", spe_id); uint32_t ea_mfc, mbox; // send ready message spu_write_out_mbox(SPU_READY); while (1) { /* Check mailbox */ mbox = spu_read_in_mbox(); deprintf("[SPU] Message is %u\n", mbox); switch (mbox) { case SPU_EXIT: deprintf("[SPU] yuv2rgb_converter goes down...\n"); return 0; case SPU_START: break; default: deprintf("[SPU] Cannot handle message\n"); continue; } /* Tag Manager setup */ unsigned int tag_id; tag_id = mfc_multi_tag_reserve(1); if (tag_id == MFC_TAG_INVALID) { deprintf("[SPU] Failed to reserve mfc tags on yuv2rgb_converter\n"); return 0; } /* DMA transfer for the input parameters */ ea_mfc = spu_read_in_mbox(); deprintf("[SPU] Message on yuv2rgb_converter is %u\n", ea_mfc); spu_mfcdma32(&parms_converter, (unsigned int)ea_mfc, sizeof(struct yuv2rgb_parms_t), tag_id, MFC_GET_CMD); DMA_WAIT_TAG(tag_id); /* There are alignment issues that involve handling of special cases * a width of 32 results in a width of 16 in the chrominance * --> choose the proper handling to optimize the performance */ deprintf("[SPU] Convert %ix%i from YUV to RGB\n", parms_converter.src_pixel_width, parms_converter.src_pixel_height); if (!(parms_converter.src_pixel_width & 0x1f)) { deprintf("[SPU] Using yuv_to_rgb_w16\n"); yuv_to_rgb_w16(); } else { deprintf("[SPU] Using yuv_to_rgb_w32\n"); yuv_to_rgb_w32(); } mfc_multi_tag_release(tag_id, 1); deprintf("[SPU] yuv2rgb_spu... done!\n"); /* Send FIN message */ spu_write_out_mbox(SPU_FIN); } return 0; } /* * float_to_char() * * converts a float to a character using saturated * arithmetic * * @param s float for conversion * @returns converted character */ inline static unsigned char float_to_char(float s) { vector float vec_s = spu_splats(s); vector unsigned int select_1 = spu_cmpgt(vec_0_1, vec_s); vec_s = spu_sel(vec_s, vec_0_1, select_1); vector unsigned int select_2 = spu_cmpgt(vec_s, vec_255); vec_s = spu_sel(vec_s, vec_255, select_2); return (unsigned char) spu_extract(vec_s,0); } /* * vfloat_to_vuint() * * converts a float vector to an unsinged int vector using saturated * arithmetic * * @param vec_s float vector for conversion * @returns converted unsigned int vector */ inline static vector unsigned int vfloat_to_vuint(vector float vec_s) { vector unsigned int select_1 = spu_cmpgt(vec_0_1, vec_s); vec_s = spu_sel(vec_s, vec_0_1, select_1); vector unsigned int select_2 = spu_cmpgt(vec_s, vec_255); vec_s = spu_sel(vec_s, vec_255, select_2); return spu_convtu(vec_s,0); } void yuv_to_rgb_w16() { // Pixel dimensions of the picture uint32_t width, height; // Extract parameters width = parms_converter.src_pixel_width; height = parms_converter.src_pixel_height; // Plane data management // Y unsigned char* ram_addr_y = parms_converter.y_plane; // V unsigned char* ram_addr_v = parms_converter.v_plane; // U unsigned char* ram_addr_u = parms_converter.u_plane; // BGRA unsigned char* ram_addr_bgra = parms_converter.dstBuffer; // Strides unsigned int stride_y = width; unsigned int stride_vu = width>>1; // Buffer management unsigned int buf_idx = 0; unsigned int size_4lines_y = stride_y<<2; unsigned int size_2lines_y = stride_y<<1; unsigned int size_2lines_vu = stride_vu<<1; // 2*width*4byte_per_pixel unsigned int size_2lines_bgra = width<<3; // start double-buffered processing // 4 lines y spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y, size_4lines_y, RETR_BUF+buf_idx, MFC_GET_CMD); // 2 lines v spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD); // 2 lines u spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD); // Wait for these transfers to be completed DMA_WAIT_TAG((RETR_BUF + buf_idx)); unsigned int i; for(i=0; i<(height>>2)-1; i++) { buf_idx^=1; // 4 lines y spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y+size_4lines_y, size_4lines_y, RETR_BUF+buf_idx, MFC_GET_CMD); // 2 lines v spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v+size_2lines_vu, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD); // 2 lines u spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u+size_2lines_vu, size_2lines_vu, RETR_BUF+buf_idx, MFC_GET_CMD); DMA_WAIT_TAG((RETR_BUF + buf_idx)); buf_idx^=1; // Convert YUV to BGRA, store it back (first two lines) #ifndef TESTING yuv_to_rgb_w16_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w16_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); #else yuv_to_rgb_w2_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w2_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); #endif // Wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); // Store converted lines in two steps->max transfer size 16384 spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; spu_mfcdma32(bgra+size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; // Move 4 lines ram_addr_y += size_4lines_y; ram_addr_v += size_2lines_vu; ram_addr_u += size_2lines_vu; buf_idx^=1; } #ifndef TESTING // Convert YUV to BGRA, store it back (first two lines) yuv_to_rgb_w16_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w16_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); #else // Convert YUV to BGRA, store it back (first two lines) yuv_to_rgb_w2_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w2_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); #endif // Wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; spu_mfcdma32(bgra+size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); // wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); } void yuv_to_rgb_w32() { // Pixel dimensions of the picture uint32_t width, height; // Extract parameters width = parms_converter.src_pixel_width; height = parms_converter.src_pixel_height; // Plane data management // Y unsigned char* ram_addr_y = parms_converter.y_plane; // V unsigned char* ram_addr_v = parms_converter.v_plane; // U unsigned char* ram_addr_u = parms_converter.u_plane; // BGRA unsigned char* ram_addr_bgra = parms_converter.dstBuffer; // Strides unsigned int stride_y = width; unsigned int stride_vu = width>>1; // Buffer management unsigned int buf_idx = 0; unsigned int size_4lines_y = stride_y<<2; unsigned int size_2lines_y = stride_y<<1; unsigned int size_2lines_vu = stride_vu<<1; // 2*width*4byte_per_pixel unsigned int size_2lines_bgra = width<<3; // start double-buffered processing // 4 lines y spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y, size_4lines_y, RETR_BUF + buf_idx, MFC_GET_CMD); // 2 lines v spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD); // 2 lines u spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD); // Wait for these transfers to be completed DMA_WAIT_TAG((RETR_BUF + buf_idx)); unsigned int i; for(i=0; i < (height>>2)-1; i++) { buf_idx^=1; // 4 lines y spu_mfcdma32(y_plane[buf_idx], (unsigned int) ram_addr_y+size_4lines_y, size_4lines_y, RETR_BUF + buf_idx, MFC_GET_CMD); deprintf("4lines = %d\n", size_4lines_y); // 2 lines v spu_mfcdma32(v_plane[buf_idx], (unsigned int) ram_addr_v+size_2lines_vu, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD); deprintf("2lines = %d\n", size_2lines_vu); // 2 lines u spu_mfcdma32(u_plane[buf_idx], (unsigned int) ram_addr_u+size_2lines_vu, size_2lines_vu, RETR_BUF + buf_idx, MFC_GET_CMD); deprintf("2lines = %d\n", size_2lines_vu); DMA_WAIT_TAG((RETR_BUF + buf_idx)); buf_idx^=1; // Convert YUV to BGRA, store it back (first two lines) yuv_to_rgb_w32_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w32_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); // Wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); // Store converted lines in two steps->max transfer size 16384 spu_mfcdma32(bgra, (unsigned int)ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; spu_mfcdma32(bgra + size_2lines_bgra, (unsigned int)ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; // Move 4 lines ram_addr_y += size_4lines_y; ram_addr_v += size_2lines_vu; ram_addr_u += size_2lines_vu; buf_idx^=1; } // Convert YUV to BGRA, store it back (first two lines) yuv_to_rgb_w32_line(y_plane[buf_idx], v_plane[buf_idx], u_plane[buf_idx], bgra, width); // Next two lines yuv_to_rgb_w32_line(y_plane[buf_idx] + size_2lines_y, v_plane[buf_idx] + stride_vu, u_plane[buf_idx] + stride_vu, bgra + size_2lines_bgra, width); // Wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); spu_mfcdma32(bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); ram_addr_bgra += size_2lines_bgra; spu_mfcdma32(bgra + size_2lines_bgra, (unsigned int) ram_addr_bgra, size_2lines_bgra, STR_BUF, MFC_PUT_CMD); // Wait for previous storing transfer to be completed DMA_WAIT_TAG(STR_BUF); } /* Some vectors needed by the yuv 2 rgb conversion algorithm */ const vector float vec_minus_128 = { -128.0f, -128.0f, -128.0f, -128.0f }; const vector unsigned char vec_null = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; const vector unsigned char vec_char2int_first = { 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x12, 0x00, 0x00, 0x00, 0x13 }; const vector unsigned char vec_char2int_second = { 0x00, 0x00, 0x00, 0x14, 0x00, 0x00, 0x00, 0x15, 0x00, 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x17 }; const vector unsigned char vec_char2int_third = { 0x00, 0x00, 0x00, 0x18, 0x00, 0x00, 0x00, 0x19, 0x00, 0x00, 0x00, 0x1A, 0x00, 0x00, 0x00, 0x1B }; const vector unsigned char vec_char2int_fourth = { 0x00, 0x00, 0x00, 0x1C, 0x00, 0x00, 0x00, 0x1D, 0x00, 0x00, 0x00, 0x1E, 0x00, 0x00, 0x00, 0x1F }; const vector float vec_R_precalc_coeff = {1.403f, 1.403f, 1.403f, 1.403f}; const vector float vec_Gu_precalc_coeff = {-0.344f, -0.344f, -0.344f, -0.344f}; const vector float vec_Gv_precalc_coeff = {-0.714f, -0.714f, -0.714f, -0.714f}; const vector float vec_B_precalc_coeff = {1.773f, 1.773f, 1.773f, 1.773f}; const vector unsigned int vec_alpha = { 255 << 24, 255 << 24, 255 << 24, 255 << 24 }; const vector unsigned char vec_select_floats_upper = { 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x04, 0x05, 0x06, 0x07 }; const vector unsigned char vec_select_floats_lower = { 0x08, 0x09, 0x0A, 0x0B, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x0C, 0x0D, 0x0E, 0x0F }; #ifdef TESTING /* * yuv_to_rgb_w2() * * - converts x * 4 pixels from YUV to RGB * - two lines of YUV are taken as input. * - width has to be a multiple of 2 (= 4 pixel) * * @param y_addr address of the y plane (local store) * @param v_addr address of the v plane (local store) * @param u_addr address of the u plane (local store) * @param bgra_addr_char address of the bgra output buffer (local store) * @param width the width of a line in pixel */ void yuv_to_rgb_w2_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_char, unsigned int width) { // each pixel is stored as an integer unsigned int* bgra_addr = (unsigned int*) bgra_addr_char; unsigned int x; // Go through each line in steps of 2, because every U and V value is connected to 4 pixels Y (YUV 4:2:0) for(x = 0; x < width; x+=2) { // Get the 4 Y, 1 U and 1 V values const unsigned char Y_1 = *(y_addr + x); const unsigned char Y_2 = *(y_addr + x + 1); const unsigned char Y_3 = *(y_addr + x + width); const unsigned char Y_4 = *(y_addr + x + width + 1); const unsigned char U = *(u_addr + (x >> 1)); const unsigned char V = *(v_addr + (x >> 1)); // Start converting float V_minus_128 = (float)((float)V - 128.0f); float U_minus_128 = (float)((float)U - 128.0f); float R_precalculate = 1.403f * V_minus_128; float G_precalculate = -(0.344f * U_minus_128 + 0.714f * V_minus_128); float B_precalculate = 1.773f * U_minus_128; // Cast the results const unsigned char R_1 = float_to_char((Y_1 + R_precalculate)); const unsigned char R_2 = float_to_char((Y_2 + R_precalculate)); const unsigned char R_3 = float_to_char((Y_3 + R_precalculate)); const unsigned char R_4 = float_to_char((Y_4 + R_precalculate)); const unsigned char G_1 = float_to_char((Y_1 + G_precalculate)); const unsigned char G_2 = float_to_char((Y_2 + G_precalculate)); const unsigned char G_3 = float_to_char((Y_3 + G_precalculate)); const unsigned char G_4 = float_to_char((Y_4 + G_precalculate)); const unsigned char B_1 = float_to_char((Y_1 + B_precalculate)); const unsigned char B_2 = float_to_char((Y_2 + B_precalculate)); const unsigned char B_3 = float_to_char((Y_3 + B_precalculate)); const unsigned char B_4 = float_to_char((Y_4 + B_precalculate)); // Write back *(bgra_addr + x) = (B_1 << 0)| (G_1 << 8) | (R_1 << 16) | (255 << 24); *(bgra_addr + x + 1) = (B_2 << 0)| (G_2 << 8) | (R_2 << 16) | (255 << 24); *(bgra_addr + x + width) = (B_3 << 0)| (G_3 << 8) | (R_3 << 16) | (255 << 24); *(bgra_addr + x + width + 1) = (B_4 << 0)| (G_4 << 8) | (R_4 << 16) | (255 << 24); } } #endif /* * yuv_to_rgb_w32() * * processes to line of yuv-input, width has to be a multiple of 32 * two lines of yuv are taken as input * * @param y_addr address of the y plane in local store * @param v_addr address of the v plane in local store * @param u_addr address of the u plane in local store * @param bgra_addr_ address of the bgra output buffer * @param width the width in pixel */ void yuv_to_rgb_w32_line(unsigned char* y_addr, unsigned char* v_addr, unsigned char* u_addr, unsigned char* bgra_addr_, unsigned int width) { // each pixel is stored as an integer unsigned int* bgra_addr = (unsigned int*) bgra_addr_; unsigned int x; for(x = 0; x < width; x+=32) { // Gehe zweischrittig durch die zeile, da jeder u und v wert fuer 4 pixel(zwei hoch, zwei breit) gilt const vector unsigned char vchar_Y_1 = *((vector unsigned char*)(y_addr + x)); const vector unsigned char vchar_Y_2 = *((vector unsigned char*)(y_addr + x + 16)); const vector unsigned char vchar_Y_3 = *((vector unsigned char*)(y_addr + x + width)); const vector unsigned char vchar_Y_4 = *((vector unsigned char*)(y_addr + x + width + 16)); const vector unsigned char vchar_U = *((vector unsigned char*)(u_addr + (x >> 1))); const vector unsigned char vchar_V = *((vector unsigned char*)(v_addr + (x >> 1))); const vector float vfloat_U_1 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_first), 0),vec_minus_128); const vector float vfloat_U_2 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_second), 0),vec_minus_128); const vector float vfloat_U_3 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_third), 0),vec_minus_128); const vector float vfloat_U_4 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_U, vec_char2int_fourth), 0),vec_minus_128); const vector float vfloat_V_1 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_first), 0),vec_minus_128); const vector float vfloat_V_2 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_second), 0),vec_minus_128); const vector float vfloat_V_3 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_third), 0),vec_minus_128); const vector float vfloat_V_4 = spu_add(spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_V, vec_char2int_fourth), 0),vec_minus_128); vector float Y_1 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_first), 0); vector float Y_2 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_second), 0); vector float Y_3 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_third), 0); vector float Y_4 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_1, vec_char2int_fourth), 0); vector float Y_5 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_first), 0); vector float Y_6 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_second), 0); vector float Y_7 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_third), 0); vector float Y_8 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_2, vec_char2int_fourth), 0); vector float Y_9 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_first), 0); vector float Y_10 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_second), 0); vector float Y_11 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_third), 0); vector float Y_12 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_3, vec_char2int_fourth), 0); vector float Y_13 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_first), 0); vector float Y_14 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_second), 0); vector float Y_15 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_third), 0); vector float Y_16 = spu_convtf((vector unsigned int)spu_shuffle(vec_null, vchar_Y_4, vec_char2int_fourth), 0); const vector float R1a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_1); const vector float R2a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_2); const vector float R3a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_3); const vector float R4a_precalculate = spu_mul(vec_R_precalc_coeff, vfloat_V_4); const vector float R1_precalculate = spu_shuffle(R1a_precalculate, R1a_precalculate, vec_select_floats_upper); const vector float R2_precalculate = spu_shuffle(R1a_precalculate, R1a_precalculate, vec_select_floats_lower); const vector float R3_precalculate = spu_shuffle(R2a_precalculate, R2a_precalculate, vec_select_floats_upper); const vector float R4_precalculate = spu_shuffle(R2a_precalculate, R2a_precalculate, vec_select_floats_lower); const vector float R5_precalculate = spu_shuffle(R3a_precalculate, R3a_precalculate, vec_select_floats_upper); const vector float R6_precalculate = spu_shuffle(R3a_precalculate, R3a_precalculate, vec_select_floats_lower); const vector float R7_precalculate = spu_shuffle(R4a_precalculate, R4a_precalculate, vec_select_floats_upper); const vector float R8_precalculate = spu_shuffle(R4a_precalculate, R4a_precalculate, vec_select_floats_lower); const vector float G1a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_1, spu_mul(vfloat_V_1, vec_Gv_precalc_coeff)); const vector float G2a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_2, spu_mul(vfloat_V_2, vec_Gv_precalc_coeff)); const vector float G3a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_3, spu_mul(vfloat_V_3, vec_Gv_precalc_coeff)); const vector float G4a_precalculate = spu_madd(vec_Gu_precalc_coeff, vfloat_U_4, spu_mul(vfloat_V_4, vec_Gv_precalc_coeff)); const vector float G1_precalculate = spu_shuffle(G1a_precalculate, G1a_precalculate, vec_select_floats_upper); const vector float G2_precalculate = spu_shuffle(G1a_precalculate, G1a_precalculate, vec_select_floats_lower); const vector float G3_precalculate = spu_shuffle(G2a_precalculate, G2a_precalculate, vec_select_floats_upper); const vector float G4_precalculate = spu_shuffle(G2a_precalculate, G2a_precalculate, vec_select_floats_lower); const vector float G5_precalculate = spu_shuffle(G3a_precalculate, G3a_precalculate, vec_select_floats_upper); const vector float G6_precalculate = spu_shuffle(G3a_precalculate, G3a_precalculate, vec_select_floats_lower); const vector float G7_precalculate = spu_shuffle(G4a_precalculate, G4a_precalculate, vec_select_floats_upper); const vector float G8_precalculate = spu_shuffle(G4a_precalculate, G4a_precalculate, vec_select_floats_lower); const vector float B1a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_1); const vector float B2a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_2); const vector float B3a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_3); const vector float B4a_precalculate = spu_mul(vec_B_precalc_coeff, vfloat_U_4); const vector float B1_precalculate = spu_shuffle(B1a_precalculate, B1a_precalculate, vec_select_floats_upper); const vector float B2_precalculate = spu_shuffle(B1a_precalculate, B1a_precalculate, vec_select_floats_lower); const vector float B3_precalculate = spu_shuffle(B2a_precalculate, B2a_precalculate, vec_select_floats_upper); const vector float B4_precalculate = spu_shuffle(B2a_precalculate, B2a_precalculate, vec_select_floats_lower); const vector float B5_precalculate = spu_shuffle(B3a_precalculate, B3a_precalculate, vec_select_floats_upper); const vector float B6_precalculate = spu_shuffle(B3a_precalculate, B3a_precalculate, vec_select_floats_lower); const vector float B7_precalculate = spu_shuffle(B4a_precalculate, B4a_precalculate, vec_select_floats_upper); const vector float B8_precalculate = spu_shuffle(B4a_precalculate, B4a_precalculate, vec_select_floats_lower); const vector unsigned int R_1 = vfloat_to_vuint(spu_add( Y_1, R1_precalculate)); const vector unsigned int R_2 = vfloat_to_vuint(spu_add( Y_2, R2_precalculate)); const vector unsigned int R_3 = vfloat_to_vuint(spu_add( Y_3, R3_precalculate)); const vector unsigned int R_4 = vfloat_to_vuint(spu_add( Y_4, R4_precalculate)); const vector unsigned int R_5 = vfloat_to_vuint(spu_add( Y_5, R5_precalculate)); const vector unsigned int R_6 = vfloat_to_vuint(spu_add( Y_6, R6_precalculate)); const vector unsigned int R_7 = vfloat_to_vuint(spu_add( Y_7, R7_precalculate)); const vector unsigned int R_8 = vfloat_to_vuint(spu_add( Y_8, R8_precalculate)); const vector unsigned int R_9 = vfloat_to_vuint(spu_add( Y_9, R1_precalculate)); const vector unsigned int R_10 = vfloat_to_vuint(spu_add(Y_10, R2_precalculate)); const vector unsigned int R_11 = vfloat_to_vuint(spu_add(Y_11, R3_precalculate)); const vector unsigned int R_12 = vfloat_to_vuint(spu_add(Y_12, R4_precalculate)); const vector unsigned int R_13 = vfloat_to_vuint(spu_add(Y_13, R5_precalculate)); const vector unsigned int R_14 = vfloat_to_vuint(spu_add(Y_14, R6_precalculate)); const vector unsigned int R_15 = vfloat_to_vuint(spu_add(Y_15, R7_precalculate)); const vector unsigned int R_16 = vfloat_to_vuint(spu_add(Y_16, R8_precalculate)); const vector unsigned int G_1 = vfloat_to_vuint(spu_add( Y_1, G1_precalculate)); const vector unsigned int G_2 = vfloat_to_vuint(spu_add( Y_2, G2_precalculate)); const vector unsigned int G_3 = vfloat_to_vuint(spu_add( Y_3, G3_precalculate)); const vector unsigned int G_4 = vfloat_to_vuint(spu_add( Y_4, G4_precalculate)); const vector unsigned int G_5 = vfloat_to_vuint(spu_add( Y_5, G5_precalculate)); const vector unsigned int G_6 = vfloat_to_vuint(spu_add( Y_6, G6_precalculate)); const vector unsigned int G_7 = vfloat_to_vuint(spu_add( Y_7, G7_precalculate)); const vector unsigned int G_8 = vfloat_to_vuint(spu_add( Y_8, G8_precalculate)); const vector unsigned int G_9 = vfloat_to_vuint(spu_add( Y_9, G1_precalculate)); const vector unsigned int G_10 = vfloat_to_vuint(spu_add(Y_10, G2_precalculate)); const vector unsigned int G_11 = vfloat_to_vuint(spu_add(Y_11, G3_precalculate)); const vector unsigned int G_12 = vfloat_to_vuint(spu_add(Y_12, G4_precalculate)); const vector unsigned int G_13 = vfloat_to_vuint(spu_add(Y_13, G5_precalculate)); const vector unsigned int G_14 = vfloat_to_vuint(spu_add(Y_14, G6_precalculate)); const vector unsigned int G_15 = vfloat_to_vuint(spu_add(Y_15, G7_precalculate)); const vector unsigned int G_16 = vfloat_to_vuint(spu_add(Y_16, G8_precalculate)); const vector unsigned int B_1 = vfloat_to_vuint(spu_add( Y_1, B1_precalculate)); const vector unsigned int B_2 = vfloat_to_vuint(spu_add( Y_2, B2_precalculate)); const vector unsigned int B_3 = vfloat_to_vuint(spu_add( Y_3, B3_precalculate)); const vector unsigned int B_4 = vfloat_to_vuint(spu_add( Y_4, B4_precalculate)); const vector unsigned int B_5 = vfloat_to_vuint(spu_add( Y_5, B5_precalculate)); const vector unsigned int B_6 = vfloat_to_vuint(spu_add( Y_6, B6_precalculate)); const vector unsigned int B_7 = vfloat_to_vuint(spu_add( Y_7, B7_precalculate)); const vector unsigned int B_8 = vfloat_to_vuint(spu_add( Y_8, B8_precalculate)); const vector unsigned int B_9 = vfloat_to_vuint(spu_add( Y_9, B1_precalculate)); const vector unsigned int B_10 = vfloat_to_vuint(spu_add(Y_10, B2_precalculate)); const vector unsigned int B_11 = vfloat_to_vuint(spu_add(Y_11, B3_precalculate)); const vector unsigned int B_12 = vfloat_to_vuint(spu_add(Y_12, B4_precalculate)); const vector unsigned int B_13 = vfloat_to_vuint(spu_add(Y_13, B5_precalculate)); const vector unsigned int B_14 = vfloat_to_vuint(spu_add(Y_14, B6_precalculate)); const vector unsigned int B_15 = vfloat_to_vuint(spu_add(Y_15, B7_precalculate)); const vector unsigned int B_16 = vfloat_to_vuint(spu_add(Y_16, B8_precalculate)); *((vector unsigned int*)(bgra_addr + x)) = spu_or(spu_or(vec_alpha, B_1), spu_or(spu_slqwbyte( R_1, 2),spu_slqwbyte(G_1, 1))); *((vector unsigned int*)(bgra_addr + x + 4)) = spu_or(spu_or(vec_alpha, B_2), spu_or(spu_slqwbyte( R_2, 2),spu_slqwbyte(G_2, 1))); *((vector unsigned int*)(bgra_addr + x + 8)) = spu_or(spu_or(vec_alpha, B_3), spu_or(spu_slqwbyte( R_3, 2),spu_slqwbyte(G_3, 1))); *((vector unsigned int*)(bgra_addr + x + 12)) = spu_or(spu_or(vec_alpha, B_4), spu_or(spu_slqwbyte( R_4, 2),spu_slqwbyte(G_4, 1))); *((vector unsigned int*)(bgra_addr + x + 16)) = spu_or(spu_or(vec_alpha, B_5), spu_or(spu_slqwbyte( R_5, 2),spu_slqwbyte(G_5, 1))); *((vector unsigned int*)(bgra_addr + x + 20)) = spu_or(spu_or(vec_alpha, B_6), spu_or(spu_slqwbyte( R_6, 2),spu_slqwbyte(G_6, 1))); *((vector unsigned int*)(bgra_addr + x + 24)) = spu_or(spu_or(vec_alpha, B_7), spu_or(spu_slqwbyte( R_7, 2),spu_slqwbyte(G_7, 1))); *((vector unsigned int*)(bgra_addr + x + 28)) = spu_or(spu_or(vec_alpha, B_8), spu_or(spu_slqwbyte( R_8, 2),spu_slqwbyte(G_8, 1))); *((vector unsigned int*)(bgra_addr + x + width)) = spu_or(spu_or(vec_alpha, B_9), spu_or(spu_slqwbyte( R_9, 2),spu_slqwbyte(G_9, 1))); *((vector unsigned int*)(bgra_addr + x + width + 4)) = spu_or(spu_or(vec_alpha, B_10), spu_or(spu_slqwbyte(R_10, 2),spu_slqwbyte(G_10, 1))); *((vector unsigned int*)(bgra_addr + x + width + 8)) = spu_or(spu_or(vec_alpha, B_11), spu_or(spu_slqwbyte(R_11, 2),spu_slqwbyte(G_11, 1))); *((vector unsigned int*)(bgra_addr + x + width + 12)) = spu_or(spu_or(vec_alpha, B_12), spu_or(spu_slqwbyte(R_12, 2),spu_slqwbyte(G_12, 1))); *((vector unsigned int*)(bgra_addr + x + width + 16)) = spu_or(spu_or(vec_alpha, B_13), spu_or(spu_slqwbyte(R_13, 2),spu_slqwbyte(G_13, 1))); *((vector unsigned int*)(bgra_addr + x + width + 20)) = spu_or(spu_or(vec_alpha, B_14), spu_or(spu_slqwbyte(R_14, 2),spu_slqwbyte(G_14, 1))); *((vector unsigned int*)(bgra_addr + x + width + 24)) = spu_or(spu_or(vec_alpha, B_15), spu_or(spu_slqwbyte(R_15, 2),spu_slqwbyte(G_15, 1))); *((vector unsigned int*)(bgra_addr + x + width + 28)) = spu_or(spu_or(vec_alpha, B_16), spu_or(spu_slqwbyte(R_16, 2),spu_slqwbyte(G_16, 1))); } }