Mercurial > sdl-ios-xcode
view src/cdrom/macosx/SDL_syscdrom_c.h @ 3241:08c5964f2a34
Fixed a few issues compiling with Mac OS X 10.6
Unfortunately the audio and cdrom systems do not build at all, and if you
disable those, SDL still fails to link with these errors:
Undefined symbols:
"_OBJC_IVAR_$_NSScreen._frame", referenced from:
-[NSScreen(NSScreenAccess) setFrame:] in SDL_cocoamodes.o
"_KLGetKeyboardLayoutProperty", referenced from:
_UpdateKeymap in SDL_cocoakeyboard.o
_UpdateKeymap in SDL_cocoakeyboard.o
"_KLGetCurrentKeyboardLayout", referenced from:
_UpdateKeymap in SDL_cocoakeyboard.o
ld: symbol(s) not found
author | Sam Lantinga <slouken@libsdl.org> |
---|---|
date | Sat, 05 Sep 2009 07:33:54 +0000 |
parents | 99210400e8b9 |
children |
line wrap: on
line source
/* SDL - Simple DirectMedia Layer Copyright (C) 1997-2009 Sam Lantinga This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Sam Lantinga slouken@libsdl.org */ #include "SDL_config.h" /* This is the Mac OS X / CoreAudio specific header for the SDL CD-ROM API Contributed by Darrell Walisser and Max Horn */ /*********************************************************************************** Implementation Notes ********************* This code has several limitations currently (all of which are proabaly fixable): 1. A CD-ROM device is inferred from a mounted cdfs volume, so device 0 is not necessarily the first CD-ROM device on the system. (Somewhat easy to fix by useing the device name from the volume id's to reorder the volumes) 2. You can only open and control 1 CD-ROM device at a time. (Challenging to fix, due to extensive code restructuring) 3. The status reported by SDL_CDStatus only changes to from CD_PLAYING to CD_STOPPED in 1-second intervals (because the audio is buffered in 1-second chunks) If the audio data is less than 1 second, the remainder is filled with silence. If you need to play sequences back-to-back that are less that 1 second long, use the frame position to determine when to play the next sequence, instead of SDL_CDStatus. This may be possible to fix with a clever usage of the AudioUnit API. 4. When new volumes are inserted, our volume information is not updated. The only way to refresh this information is to reinit the CD-ROM subsystem of SDL. To fix this, one would probably have to fix point 1 above first, then figure out how to register for a notification when new media is mounted in order to perform an automatic rescan for cdfs volumes. So, here comes a description of how this all works. < Initializing > To get things rolling, we have to locate mounted volumes that contain audio (since nearly all Macs don't have analog audio-in on the sound card). That's easy, since these volumes have a flag that indicates this special filesystem. See DetectAudioCDVolumes() in CDPlayer.cpp for this code. Next, we parse the invisible .TOC.plist in the root of the volume, which gets us the track information (number, offset, length, leadout, etc). See ReadTOCData() in CDPlayer.cpp for the skinny on this. < The Playback Loop > Now come the tricky parts. Let's start with basic audio playback. When a frame range to play is requested, we must first find the .aiff files on the volume, hopefully in the right order. Since these files all begin with a number "1 Audio Track", etc, this is used to determine the correct track order. Once all files are determined, we have to find what file corresponds to the start and length parameter to SDL_SYS_CDPlay(). Again, this is quite simple by walking the cdrom's track list. At this point, we also save the offset to the next track and frames remaining, if we're going to have to play another file after the first one. See GetFileForOffset() for this code. At this point we have all info needed to start playback, so we hand off to the LoadFile() function, which proceeds to do its magic and plays back the file. When the file is finished playing, CompletionProc() is invoked, at which time we can play the next file if the previously saved next track and frames remaining indicates that we should. < Magic > OK, so it's not really magic, but since I don't fully understand all the hidden details it seems like it to me ;-) The API's involved are the AudioUnit and AudioFile API's. These appear to be an extension of CoreAudio for creating modular playback and f/x entities. The important thing is that CPU usage is very low and reliability is very high. You'd be hard-pressed to find a way to stutter the playback with other CPU-intensive tasks. One part of this magic is that it uses multiple threads, which carries the usual potential for disaster if not handled carefully. Playback currently requires 4 additional threads: 1. The coreaudio runloop thread 2. The coreaudio device i/o thread 3. The file streaming thread 4. The notification/callback thread The first 2 threads are necessary evil - CoreAudio creates this no matter what the situation is (even the SDL sound implementation creates theses suckers). The last two are are created by us. The file is streamed from disk using a threaded double-buffer approach. This way, the high latency operation of reading from disk can be performed without interrupting the real-time device thread (which amounts to avoiding dropouts). The device thread grabs the buffer that isn't being read and sends it to the CoreAudio mixer where it eventually gets to the sound card. The device thread posts a notification when the file streaming thread is out of data. This notification must be handled in a separate thread to avoid potential deadlock in the device thread. That's where the notification thread comes in. This thread is signaled whenever a notification needs to be processed, so another file can be played back if need be. The API in CDPlayer.cpp contains synchronization because otherwise both the notification thread and main thread (or another other thread using the SDL CD api) can potentially call it at the same time. ************************************************************************************/ #include "SDL_cdrom.h" #include "../SDL_syscdrom.h" #include "CDPlayer.h" #define kErrorFakeDevice "Error: Cannot proceed since we're faking a CD-ROM device. Reinit the CD-ROM subsystem to scan for new volumes." /* vi: set ts=4 sw=4 expandtab: */